論文の概要: RepCNN: Micro-sized, Mighty Models for Wakeword Detection
- arxiv url: http://arxiv.org/abs/2406.02652v1
- Date: Tue, 4 Jun 2024 16:14:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 23:19:06.889878
- Title: RepCNN: Micro-sized, Mighty Models for Wakeword Detection
- Title(参考訳): RepCNN: Wakeword検出のためのマイクロサイズマイティモデル
- Authors: Arnav Kundu, Prateeth Nayak, Hywel Richards, Priyanka Padmanabhan, Devang Naik,
- Abstract要約: 常時オンの機械学習モデルは、非常に少ないメモリと計算フットプリントを必要とする。
より大規模なマルチブランチアーキテクチャへの計算によって、小さな畳み込みモデルをよりよく訓練できることが示される。
我々は、常時起動するウェイクワード検出モデルであるRepCNNが、推論中のレイテンシと精度のトレードオフを良好に提供することを示す。
- 参考スコア(独自算出の注目度): 4.120302489727023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Always-on machine learning models require a very low memory and compute footprint. Their restricted parameter count limits the model's capacity to learn, and the effectiveness of the usual training algorithms to find the best parameters. Here we show that a small convolutional model can be better trained by first refactoring its computation into a larger redundant multi-branched architecture. Then, for inference, we algebraically re-parameterize the trained model into the single-branched form with fewer parameters for a lower memory footprint and compute cost. Using this technique, we show that our always-on wake-word detector model, RepCNN, provides a good trade-off between latency and accuracy during inference. RepCNN re-parameterized models are 43% more accurate than a uni-branch convolutional model while having the same runtime. RepCNN also meets the accuracy of complex architectures like BC-ResNet, while having 2x lesser peak memory usage and 10x faster runtime.
- Abstract(参考訳): 常時オンの機械学習モデルは、非常に少ないメモリと計算フットプリントを必要とする。
彼らの制限されたパラメータカウントは、学習するモデルの能力と、最高のパラメータを見つけるための通常のトレーニングアルゴリズムの有効性を制限する。
ここでは、小さな畳み込みモデルを、まず計算をより大きな冗長なマルチブランチアーキテクチャにリファクタリングすることで、よりよく訓練できることを示す。
そして、推論のために、トレーニングされたモデルをより少ないパラメータでより少ないメモリフットプリントと計算コストで単一ブランチ形式に代数的に再パラメータ化する。
この手法を用いることで、常時起動するウェイクワード検出モデルであるRepCNNが、推論中のレイテンシと精度のトレードオフを良好に提供することを示す。
RepCNNの再パラメータ化モデルは、同じランタイムを持ちながら、ユニブランチの畳み込みモデルよりも43%正確である。
RepCNNは、BC-ResNetのような複雑なアーキテクチャの精度も満たしている。
関連論文リスト
- Reinforcement Learning with Fast and Forgetful Memory [10.087126455388276]
強化学習(RL)に特化して設計されたアルゴリズムに依存しないメモリモデルであるFast and Forgetful Memoryを導入する。
提案手法は,計算心理学に触発された強い構造的先行性を通じて,モデル探索空間を制約する。
Fast and Forgetful Memoryは、リカレントニューラルネットワーク(RNN)よりも2桁高速なトレーニング速度を示す
論文 参考訳(メタデータ) (2023-10-06T09:56:26Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of
Language Model [92.55145016562867]
分散を低減した行列生成のために, WTA-CRS と呼ばれる新しい非バイアス推定系を提案する。
我々の研究は、チューニング変換器の文脈において、提案した推定器が既存のものよりも低い分散を示すという理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-05-24T15:52:08Z) - SpikeGPT: Generative Pre-trained Language Model with Spiking Neural Networks [21.616328837090396]
スパイキングニューラルネットワーク(SNN)はスパースとイベント駆動のアクティベーションを活用して、モデル推論に関連する計算オーバーヘッドを削減する。
イベント駆動型スパイクアクティベーションユニットを用いた生成言語モデルを実装した。
SpikeGPTは、これまでで最大のバックプロパゲーション訓練SNNモデルであり、自然言語の生成と理解の両方に適している。
論文 参考訳(メタデータ) (2023-02-27T16:43:04Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
本稿では,モデル固有の事前知識を構造学に取り入れ,汎用モデル(簡易モデル)の学習に使用する新しいパラダイムを提案する。
実装として,モデル固有のハイパーパラメータの集合に従って勾配を変更することによって,事前知識を付加する手法を提案する。
Reprでトレーニングされた単純なモデルに対しては、VGGスタイルのプレーンモデルに注目し、ReprでトレーニングされたそのようなシンプルなモデルがRep-VGGと呼ばれ、最近のよく設計されたモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-05-30T16:55:59Z) - Omni-sparsity DNN: Fast Sparsity Optimization for On-Device Streaming
E2E ASR via Supernet [24.62661549442265]
我々は,Omni-sparsity DNNを提案する。そこでは,1つのニューラルネットワークを切断して,広範囲のモデルサイズに対して最適化されたモデルを生成する。
以上の結果から,LibriSpeechのトレーニング時間とリソースの保存時間は,個別のプルーニングモデルと比較すると,類似あるいは精度がよいことがわかった。
論文 参考訳(メタデータ) (2021-10-15T20:28:27Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - Training Deep Neural Networks with Constrained Learning Parameters [4.917317902787792]
ディープラーニングタスクのかなりの部分はエッジコンピューティングシステムで実行される。
我々は, Combinatorial Neural Network Training Algorithm (CNNTrA)を提案する。
CoNNTrAは、MNIST、Iris、ImageNetデータセット上で、第三次学習パラメータでディープラーニングモデルをトレーニングする。
以上の結果から,CNNTrAモデルはメモリを32倍に削減し,バックプロパゲーションモデルと同程度の誤差を有することがわかった。
論文 参考訳(メタデータ) (2020-09-01T16:20:11Z) - Improving compute efficacy frontiers with SliceOut [31.864949424541344]
SliceOut - 最終テスト精度に影響を与えることなく、ディープラーニングモデルを高速にトレーニングするためのドロップアウトインスパイアされたスキームだ。
テスト時に、SliceOutをオフにすると、テストの正確性を保持する一連のアーキテクチャに暗黙のアンサンブルが実行される。
これにより、大規模な計算ワークロード全体の処理が高速化され、結果として生じるエネルギー消費とCO2エミッションが大幅に削減される。
論文 参考訳(メタデータ) (2020-07-21T15:59:09Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
NLPモデルが大きくなればなるほど、訓練されたモデルを実行するには、金銭的・環境的なコストを発生させる重要な計算資源が必要である。
我々は、推論中、早期(かつ高速)の"exit"を可能にする文脈表現微調整の修正を提案する。
3つのテキスト分類データセットと2つの自然言語推論ベンチマークの2つのタスクで、5つの異なるデータセットに対して提案した修正を検証した。
論文 参考訳(メタデータ) (2020-04-16T04:28:08Z) - Recognizing Long Grammatical Sequences Using Recurrent Networks
Augmented With An External Differentiable Stack [73.48927855855219]
リカレントニューラルネットワーク(RNN)は、シーケンスモデリング、生成、予測に広く使われているディープアーキテクチャである。
RNNは、非常に長いシーケンスに対してあまり一般化せず、多くの重要な時間的処理や時系列予測問題に適用性を制限する。
これらの欠点に対処する方法の1つは、スタックのような外部の異なるメモリ構造とRNNを結合することである。
本稿では,重要なアーキテクチャと状態更新機構を備えたメモリ拡張RNNを改良する。
論文 参考訳(メタデータ) (2020-04-04T14:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。