Predicting AI Agent Behavior through Approximation of the Perron-Frobenius Operator
- URL: http://arxiv.org/abs/2406.02723v1
- Date: Tue, 4 Jun 2024 19:06:49 GMT
- Title: Predicting AI Agent Behavior through Approximation of the Perron-Frobenius Operator
- Authors: Shiqi Zhang, Darshan Gadginmath, Fabio Pasqualetti,
- Abstract summary: We treat AI agents as nonlinear dynamical systems and adopt a probabilistic perspective to predict their statistical behavior.
We formulate the approximation of the Perron-Frobenius (PF) operator as an entropy minimization problem.
Our data-driven methodology simultaneously approximates the PF operator to perform prediction of the evolution of the agents and also predicts the terminal probability density of AI agents.
- Score: 4.076790923976287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the behavior of AI-driven agents is particularly challenging without a preexisting model. In our paper, we address this by treating AI agents as nonlinear dynamical systems and adopting a probabilistic perspective to predict their statistical behavior using the Perron-Frobenius (PF) operator. We formulate the approximation of the PF operator as an entropy minimization problem, which can be solved by leveraging the Markovian property of the operator and decomposing its spectrum. Our data-driven methodology simultaneously approximates the PF operator to perform prediction of the evolution of the agents and also predicts the terminal probability density of AI agents, such as robotic systems and generative models. We demonstrate the effectiveness of our prediction model through extensive experiments on practical systems driven by AI algorithms.
Related papers
- Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - Over the Edge of Chaos? Excess Complexity as a Roadblock to Artificial General Intelligence [4.901955678857442]
We posited the existence of critical points, akin to phase transitions in complex systems, where AI performance might plateau or regress into instability upon exceeding a critical complexity threshold.
Our simulations demonstrated how increasing the complexity of the AI system could exceed an upper criticality threshold, leading to unpredictable performance behaviours.
arXiv Detail & Related papers (2024-07-04T05:46:39Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
This work uses variational inference to estimate the parameters of an opinion dynamics ABM.
We transform the inference process into an optimization problem suitable for automatic differentiation.
Our approach estimates both macroscopic (bounded confidence intervals and backfire thresholds) and microscopic ($200$ categorical, agent-level roles) more accurately than simulation-based and MCMC methods.
arXiv Detail & Related papers (2024-03-08T14:45:18Z) - Human Trajectory Forecasting with Explainable Behavioral Uncertainty [63.62824628085961]
Human trajectory forecasting helps to understand and predict human behaviors, enabling applications from social robots to self-driving cars.
Model-free methods offer superior prediction accuracy but lack explainability, while model-based methods provide explainability but cannot predict well.
We show that BNSP-SFM achieves up to a 50% improvement in prediction accuracy, compared with 11 state-of-the-art methods.
arXiv Detail & Related papers (2023-07-04T16:45:21Z) - Koopman Kernel Regression [6.116741319526748]
We show that Koopman operator theory offers a beneficial paradigm for characterizing forecasts via linear time-invariant (LTI) ODEs.
We derive a universal Koopman-invariant kernel reproducing Hilbert space (RKHS) that solely spans transformations into LTI dynamical systems.
Our experiments demonstrate superior forecasting performance compared to Koopman operator and sequential data predictors.
arXiv Detail & Related papers (2023-05-25T16:22:22Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - Data Assimilation in Operator Algebras [0.5249805590164901]
We develop a framework for sequential data assimilation of partially observed dynamical systems.
Projecting this formulation to finite-dimensional matrix algebras leads to new computational data assimilation schemes.
These methods are natural candidates for implementation on quantum computers.
arXiv Detail & Related papers (2022-06-27T22:56:17Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Heterogeneous-Agent Trajectory Forecasting Incorporating Class
Uncertainty [54.88405167739227]
We present HAICU, a method for heterogeneous-agent trajectory forecasting that explicitly incorporates agents' class probabilities.
We additionally present PUP, a new challenging real-world autonomous driving dataset.
We demonstrate that incorporating class probabilities in trajectory forecasting significantly improves performance in the face of uncertainty.
arXiv Detail & Related papers (2021-04-26T10:28:34Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.