A Cutting-Edge Deep Learning Method For Enhancing IoT Security
- URL: http://arxiv.org/abs/2406.12400v1
- Date: Tue, 18 Jun 2024 08:42:51 GMT
- Title: A Cutting-Edge Deep Learning Method For Enhancing IoT Security
- Authors: Nadia Ansar, Mohammad Sadique Ansari, Mohammad Sharique, Aamina Khatoon, Md Abdul Malik, Md Munir Siddiqui,
- Abstract summary: This paper proposes an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
Our model, based on the CICIDS 2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: There have been significant issues given the IoT, with heterogeneity of billions of devices and with a large amount of data. This paper proposed an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks. Our model, based on the CICIDS2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious. The real-time processing capability, scalability, and low false alarm rate in our model surpass some traditional IDS approaches and, therefore, prove successful for application in today's IoT networks. The development and the performance of the model, with possible applications that may extend to other related fields of adaptive learning techniques and cross-domain applicability, are discussed. The research involving deep learning for IoT cybersecurity offers a potent solution for significantly improving network security.
Related papers
- Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
This review paper studies recent advancements in the application of deep learning techniques, including CNN, Recurrent Neural Networks (RNN), Deep Belief Networks (DBN), Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), autoencoders (AE), Multi-Layer Perceptrons (MLP), Self-Normalizing Networks (SNN) and hybrid models, within network intrusion detection systems.
arXiv Detail & Related papers (2024-02-26T20:57:35Z) - Deep Learning Approaches for Network Traffic Classification in the
Internet of Things (IoT): A Survey [0.0]
The Internet of Things (IoT) has witnessed unprecedented growth, resulting in a massive influx of diverse network traffic from interconnected devices.
Effectively classifying this network traffic is crucial for optimizing resource allocation, enhancing security measures, and ensuring efficient network management in IoT systems.
Deep learning has emerged as a powerful technique for network traffic classification due to its ability to automatically learn complex patterns and representations from raw data.
arXiv Detail & Related papers (2024-02-01T14:33:24Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - Dependable Intrusion Detection System for IoT: A Deep Transfer
Learning-based Approach [0.0]
This manuscript proposes a deep transfer learning-based dependable IDS model that outperforms several existing approaches.
It includes effective attribute selection, which is best suited to identify normal and attack scenarios for a small amount of labeled data.
It also includes a dependable deep transfer learning-based ResNet model, and evaluating considering real-world data.
arXiv Detail & Related papers (2022-04-11T02:46:22Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.