Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset
- URL: http://arxiv.org/abs/2502.12382v1
- Date: Mon, 17 Feb 2025 23:41:10 GMT
- Title: Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset
- Authors: Md Ahnaf Akif, Ismail Butun, Andre Williams, Imadeldin Mahgoub,
- Abstract summary: Intrusion Detection Systems (IDS) are crucial for mitigating these threats.
Recent advancements in Machine Learning (ML) offer promising avenues for improvement.
This research explores a hybrid approach, combining several standalone ML models.
- Score: 0.0
- License:
- Abstract: The rapid growth of the Internet of Things (IoT) has revolutionized industries, enabling unprecedented connectivity and functionality. However, this expansion also increases vulnerabilities, exposing IoT networks to increasingly sophisticated cyberattacks. Intrusion Detection Systems (IDS) are crucial for mitigating these threats, and recent advancements in Machine Learning (ML) offer promising avenues for improvement. This research explores a hybrid approach, combining several standalone ML models such as Random Forest (RF), XGBoost, K-Nearest Neighbors (KNN), and AdaBoost, in a voting-based hybrid classifier for effective IoT intrusion detection. This ensemble method leverages the strengths of individual algorithms to enhance accuracy and address challenges related to data complexity and scalability. Using the widely-cited IoT-23 dataset, a prominent benchmark in IoT cybersecurity research, we evaluate our hybrid classifiers for both binary and multi-class intrusion detection problems, ensuring a fair comparison with existing literature. Results demonstrate that our proposed hybrid models, designed for robustness and scalability, outperform standalone approaches in IoT environments. This work contributes to the development of advanced, intelligent IDS frameworks capable of addressing evolving cyber threats.
Related papers
- Enhanced Intrusion Detection in IIoT Networks: A Lightweight Approach with Autoencoder-Based Feature Learning [0.0]
Intrusion Detection Systems (IDS) are essential for identifying and preventing abnormal network behaviors and malicious activities.
This research implements six innovative approaches to enhance IDS performance, including leveraging an autoencoder for dimensional reduction.
We are the first to deploy our model on a Jetson Nano, achieving inference times of 0.185 ms for binary classification and 0.187 ms for multiclass classification.
arXiv Detail & Related papers (2025-01-25T16:24:18Z) - Smooth Handovers via Smoothed Online Learning [48.953313950521746]
We first analyze an extensive dataset from a commercial mobile network operator (MNO) in Europe with more than 40M users, to understand and reveal important features and performance impacts on HOs.
Our findings highlight a correlation between HO failures/delays, and the characteristics of radio cells and end-user devices.
We propose a realistic system model for smooth and accurate HOs that extends existing approaches by incorporating device and cell features on HO optimization.
arXiv Detail & Related papers (2025-01-14T13:16:33Z) - Enhancing Intrusion Detection in IoT Environments: An Advanced Ensemble Approach Using Kolmogorov-Arnold Networks [3.1309870454820277]
This paper introduces a hybrid Intrusion Detection System (IDS) that combines Kolmogorov-Arnold Networks (KANs) with the XGBoost algorithm.
Our proposed IDS leverages the unique capabilities of KANs, which utilize learnable activation functions to model complex relationships within data, alongside the powerful ensemble learning techniques of XGBoost.
Experimental evaluations demonstrate that our hybrid IDS achieves an impressive detection accuracy exceeding 99% in distinguishing between benign and malicious activities.
arXiv Detail & Related papers (2024-08-28T15:58:49Z) - A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
This paper proposes an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
Our model, based on the CICIDS 2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious.
arXiv Detail & Related papers (2024-06-18T08:42:51Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
The integration of Internet of Things (IoT) applications in our daily lives has led to a surge in data traffic, posing significant security challenges.
This paper focuses on improving the effectiveness of ML-based IDS at the edge level by introducing a novel method to find a balanced trade-off between cost and accuracy.
arXiv Detail & Related papers (2024-04-29T21:26:18Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.