Incorporating Navigation Context into Inland Vessel Trajectory Prediction: A Gaussian Mixture Model and Transformer Approach
- URL: http://arxiv.org/abs/2406.02344v3
- Date: Mon, 21 Oct 2024 20:58:59 GMT
- Title: Incorporating Navigation Context into Inland Vessel Trajectory Prediction: A Gaussian Mixture Model and Transformer Approach
- Authors: Kathrin Donandt, Dirk Söffker,
- Abstract summary: In inland shipping, where vessel movement is constrained within fairways, navigational context information is indispensable.
In this contribution, a fused dataset of AIS and discharge measurements is applied to generate multi-modal distribution curves.
The incorporation of these distribution features improves prediction accuracy.
- Score: 2.498836880652668
- License:
- Abstract: Using data sources beyond the Automatic Identification System to represent the context a vessel is navigating in and consequently improve situation awareness is still rare in machine learning approaches to vessel trajectory prediction (VTP). In inland shipping, where vessel movement is constrained within fairways, navigational context information is indispensable. In this contribution targeting inland VTP, Gaussian Mixture Models (GMMs) are applied, on a fused dataset of AIS and discharge measurements, to generate multi-modal distribution curves, capturing typical lateral vessel positioning in the fairway and dislocation speeds along the waterway. By sampling the probability density curves of the GMMs, feature vectors are derived which are used, together with spatio-temporal vessel features and fairway geometries, as input to a VTP transformer model. The incorporation of these distribution features of both the current and forthcoming navigation context improves prediction accuracy. The superiority of the model over a previously proposed transformer model for inland VTP is shown. The novelty lies in the provision of preprocessed, statistics-based features representing the conditioned spatial context, rather than relying on the model to extract relevant features for the VTP task from contextual data. Oversimplification of the complexity of inland navigation patterns by assuming a single typical route or selecting specific clusters prior to model application is avoided by giving the model access to the entire distribution information. The methodology's generalizability is demonstrated through the usage of data of 3 distinct river sections. It can be integrated into an interaction-aware prediction framework, where insights into the positioning of the actual vessel behavior in the overall distribution at the current location and discharge can enhance trajectory prediction accuracy.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
We present our solution for the Vision-Centric 3D Occupancy and Flow Prediction track in the nuScenes Open-Occ dataset challenge at CVPR 2024.
Our innovative approach involves a dual-stage framework that enhances 3D occupancy and flow predictions by incorporating adaptive forward view transformation and flow modeling.
Our method combines regression with classification to address scale variations in different scenes, and leverages predicted flow to warp current voxel features to future frames, guided by future frame ground truth.
arXiv Detail & Related papers (2024-07-01T16:32:15Z) - Improved context-sensitive transformer model for inland vessel trajectory prediction [2.287415292857564]
Physics-related and model-based vessel trajectory prediction is highly accurate but requires specific knowledge of the vessel under consideration.
Machine learning-based trajectory prediction models do not require expert knowledge, but rely on the implicit knowledge extracted from massive amounts of data.
Several deep learning (DL) methods for vessel trajectory prediction have recently been suggested.
arXiv Detail & Related papers (2024-06-04T20:39:14Z) - Mixed Gaussian Flow for Diverse Trajectory Prediction [78.00204650749453]
We propose a flow-based model to transform a mixed Gaussian prior into the future trajectory manifold.
The model shows a better capacity for generating diverse trajectory patterns.
We also demonstrate that it can generate diverse, controllable, and out-of-distribution trajectories.
arXiv Detail & Related papers (2024-02-19T15:48:55Z) - Out of Distribution Detection via Domain-Informed Gaussian Process State
Space Models [22.24457254575906]
In order for robots to safely navigate in unseen scenarios, it is important to accurately detect out-of-training-distribution (OoD) situations online.
We propose a novel approach to embed existing domain knowledge in the kernel and (ii) an OoD online runtime monitor, based on receding-horizon predictions.
arXiv Detail & Related papers (2023-09-13T01:02:42Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
We propose a traffic flow physics-based transformation feature for Deep learning (DL) models for traffic flow forecasting.
This transformation incorporates Newell's uncongested and congested filters of traffic flows at the target locations, enabling the models to learn broader dynamics of the system.
An important advantage of our framework is its ability to be transferred to new locations where data is unavailable.
arXiv Detail & Related papers (2023-07-12T06:31:43Z) - Learning to Predict Navigational Patterns from Partial Observations [63.04492958425066]
This paper presents the first self-supervised learning (SSL) method for learning to infer navigational patterns in real-world environments from partial observations only.
We demonstrate how to infer global navigational patterns by fitting a maximum likelihood graph to the DSLP field.
Experiments show that our SSL model outperforms two SOTA supervised lane graph prediction models on the nuScenes dataset.
arXiv Detail & Related papers (2023-04-26T02:08:46Z) - VQ-Flows: Vector Quantized Local Normalizing Flows [2.7998963147546148]
We introduce a novel statistical framework for learning a mixture of local normalizing flows as "chart maps" over a data manifold.
Our framework augments the expressivity of recent approaches while preserving the signature property of normalizing flows, that they admit exact density evaluation.
arXiv Detail & Related papers (2022-03-22T09:22:18Z) - Multi-modal Scene-compliant User Intention Estimation for Navigation [1.9117798322548485]
A framework to generated user intention distributions when operating a mobile vehicle is proposed in this work.
The model learns from past observed trajectories and leverages traversability information derived from the visual surroundings.
Experiments were conducted on a dataset collected with a custom wheelchair model built onto the open-source urban driving simulator CARLA.
arXiv Detail & Related papers (2021-06-13T05:11:33Z) - Generative Flows with Invertible Attentions [135.23766216657745]
We introduce two types of invertible attention mechanisms for generative flow models.
We exploit split-based attention mechanisms to learn the attention weights and input representations on every two splits of flow feature maps.
Our method provides invertible attention modules with tractable Jacobian determinants, enabling seamless integration of it at any positions of the flow-based models.
arXiv Detail & Related papers (2021-06-07T20:43:04Z) - Semi-Supervised Learning with Normalizing Flows [54.376602201489995]
FlowGMM is an end-to-end approach to generative semi supervised learning with normalizing flows.
We show promising results on a wide range of applications, including AG-News and Yahoo Answers text data.
arXiv Detail & Related papers (2019-12-30T17:36:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.