論文の概要: DenoDet: Attention as Deformable Multi-Subspace Feature Denoising for Target Detection in SAR Images
- arxiv url: http://arxiv.org/abs/2406.02833v1
- Date: Wed, 5 Jun 2024 01:05:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:26:58.697438
- Title: DenoDet: Attention as Deformable Multi-Subspace Feature Denoising for Target Detection in SAR Images
- Title(参考訳): DenoDet: SAR画像におけるターゲット検出のための変形可能なマルチサブスペース機能としての注意
- Authors: Yimian Dai, Minrui Zou, Yuxuan Li, Xiang Li, Kang Ni, Jian Yang,
- Abstract要約: 本稿では、畳み込みバイアスを校正し、高周波により多くの注意を払うために、明示的な周波数領域変換によって支援されるネットワークを提案する。
変換領域ソフトしきい値処理を行う動的周波数領域アテンションモジュールであるTransDenoを設計する。
プラグアンドプレイのTransDenoは、複数のSARターゲット検出データセットに対して最先端のスコアを設定する。
- 参考スコア(独自算出の注目度): 20.11145540094807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic Aperture Radar (SAR) target detection has long been impeded by inherent speckle noise and the prevalence of diminutive, ambiguous targets. While deep neural networks have advanced SAR target detection, their intrinsic low-frequency bias and static post-training weights falter with coherent noise and preserving subtle details across heterogeneous terrains. Motivated by traditional SAR image denoising, we propose DenoDet, a network aided by explicit frequency domain transform to calibrate convolutional biases and pay more attention to high-frequencies, forming a natural multi-scale subspace representation to detect targets from the perspective of multi-subspace denoising. We design TransDeno, a dynamic frequency domain attention module that performs as a transform domain soft thresholding operation, dynamically denoising across subspaces by preserving salient target signals and attenuating noise. To adaptively adjust the granularity of subspace processing, we also propose a deformable group fully-connected layer (DeGroFC) that dynamically varies the group conditioned on the input features. Without bells and whistles, our plug-and-play TransDeno sets state-of-the-art scores on multiple SAR target detection datasets. The code is available at https://github.com/GrokCV/GrokSAR.
- Abstract(参考訳): SAR(Synthetic Aperture Radar)のターゲット検出は、固有のスペックルノイズや、小型であいまいなターゲットの出現によって長い間妨げられてきた。
ディープニューラルネットワークはSARターゲット検出を先進的に進めているが、本質的な低周波バイアスと静的な後トレーニングの重みはコヒーレントノイズに悩まされ、不均一な地形にわたって微妙な詳細を保存している。
従来のSAR画像デノベーションにより、畳み込みバイアスを校正し、高周波数に注意を払い、マルチサブスペースデノベーションの観点からターゲットを検出する自然なマルチスケールサブスペース表現を形成するために、明示的な周波数領域変換によって支援されるネットワークであるDenoDetを提案する。
我々はトランスデノ(TransDeno)を設計する。トランスデノ(TransDeno)は変換領域のソフトしきい値処理として動作し、サルエントターゲット信号の保存とノイズの減衰によりサブスペースを動的にデノイングする。
また、サブスペース処理の粒度を適応的に調整するために、入力特徴に条件付けられた群を動的に変化させる変形可能なグループ完全連結層(DeGroFC)を提案する。
ベルとホイッスルがなければ、プラグ&プレイのTransDenoは複数のSARターゲット検出データセットに対して最先端のスコアを設定する。
コードはhttps://github.com/GrokCV/GrokSARで入手できる。
関連論文リスト
- Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Robust Tiny Object Detection in Aerial Images amidst Label Noise [50.257696872021164]
本研究は,ノイズラベル管理下での微小物体検出の問題に対処する。
本稿では,DN-TOD(Denoising Tiny Object Detector)を提案する。
本手法は,1段と2段の両方のオブジェクト検出パイプラインにシームレスに統合できる。
論文 参考訳(メタデータ) (2024-01-16T02:14:33Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
一般化可能な暗黙的ニューラル表現(INR)は、単一の連続関数が複数のデータインスタンスを表現することを可能にする。
本稿では、変換器エンコーダと局所性を考慮したINRデコーダを組み合わせた一般化可能なINRのための新しいフレームワークを提案する。
我々のフレームワークは、従来の一般化可能なINRよりも大幅に優れており、下流タスクにおける局所性を考慮した潜在能力の有効性を検証している。
論文 参考訳(メタデータ) (2023-10-09T11:26:58Z) - Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
相関スペクトルと空間情報を利用した自己変調畳み込みニューラルネットワークを提案する。
モデルの中心には新しいブロックがあり、隣り合うスペクトルデータに基づいて、ネットワークが適応的に特徴を変換することができる。
合成データと実データの両方の実験解析により,提案したSM-CNNは,他の最先端HSI復調法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-09-15T06:57:43Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - Degradation-Noise-Aware Deep Unfolding Transformer for Hyperspectral
Image Denoising [9.119226249676501]
ハイパースペクトル画像(HSI)は、帯域幅が狭いため、ノイズが多いことが多い。
HSIデータキューブのノイズを低減するため、モデル駆動型と学習型の両方の復調アルゴリズムが提案されている。
本稿では,これらの問題に対処するDNA-Net(Degradation-Noise-Aware Unfolding Network)を提案する。
論文 参考訳(メタデータ) (2023-05-06T13:28:20Z) - DINF: Dynamic Instance Noise Filter for Occluded Pedestrian Detection [0.0]
RCNNベースの歩行者検出器は、矩形領域を使用してインスタンスの特徴を抽出する。
重なり合うオブジェクトの数とわずかに重なり合うオブジェクトの数は不均衡である。
RCNNをベースとした歩行者検知器の信号雑音比を改善するために, 繰り返し動的インスタンスノイズフィルタ (DINF) を提案する。
論文 参考訳(メタデータ) (2023-01-13T14:12:36Z) - Synthetic Aperture Radar Image Change Detection via Layer
Attention-Based Noise-Tolerant Network [36.860069663770226]
レイヤアテンションに基づく耐雑音性ネットワークLANTNetを提案する。
特に、異なる畳み込み層の機能を適応的に重み付けするレイヤーアテンションモジュールを設計する。
3つのSARデータセットの実験結果から,提案したLANTNetは,複数の最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-08-09T01:04:39Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
光学フローベースやエンド・ツー・エンドのディープラーニングベースのソリューションのような既存の方法は、詳細な復元やゴーストを除去する際にエラーを起こしやすい。
本研究では、周波数領域でHDR融合を行うための新しい周波数誘導型エンド・ツー・エンドディープニューラルネットワーク(FNet)を提案し、ウェーブレット変換(DWT)を用いて入力を異なる周波数帯域に分解する。
低周波信号は特定のゴーストアーティファクトを避けるために使用され、高周波信号は詳細を保存するために使用される。
論文 参考訳(メタデータ) (2021-08-03T12:26:33Z) - Conditioning Trick for Training Stable GANs [70.15099665710336]
本稿では,GANトレーニング中の不安定性問題に対応するため,ジェネレータネットワークに正規性から逸脱する条件付け手法を提案する。
我々は、生成元をシュア分解のスペクトル領域で計算された実サンプルの正規化関数から逸脱するように強制する。
論文 参考訳(メタデータ) (2020-10-12T16:50:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。