論文の概要: GFlowCausal: Generative Flow Networks for Causal Discovery
- arxiv url: http://arxiv.org/abs/2210.08185v1
- Date: Sat, 15 Oct 2022 04:07:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 16:38:09.808489
- Title: GFlowCausal: Generative Flow Networks for Causal Discovery
- Title(参考訳): GFlowCausal: 因果発見のための生成フローネットワーク
- Authors: Wenqian Li, Yinchuan Li, Shengyu Zhu, Yunfeng Shao, Jianye Hao, Yan
Pang
- Abstract要約: 本稿では,GFlowCausalと呼ばれる観測データからDAG(Directed Acyclic Graph)を学習するための新しい手法を提案する。
GFlowCausalは、事前定義された報酬に比例した確率を持つシーケンシャルアクションによって、ハイリワードDAGを生成するための最良のポリシーを学ぶことを目的としている。
合成データセットと実データセットの両方について広範な実験を行い、提案手法が優れていることを示すとともに、大規模環境での良好な性能を示す。
- 参考スコア(独自算出の注目度): 27.51595081346858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery aims to uncover causal structure among a set of variables.
Score-based approaches mainly focus on searching for the best Directed Acyclic
Graph (DAG) based on a predefined score function. However, most of them are not
applicable on a large scale due to the limited searchability. Inspired by the
active learning in generative flow networks, we propose a novel approach to
learning a DAG from observational data called GFlowCausal. It converts the
graph search problem to a generation problem, in which direct edges are added
gradually. GFlowCausal aims to learn the best policy to generate high-reward
DAGs by sequential actions with probabilities proportional to predefined
rewards. We propose a plug-and-play module based on transitive closure to
ensure efficient sampling. Theoretical analysis shows that this module could
guarantee acyclicity properties effectively and the consistency between final
states and fully-connected graphs. We conduct extensive experiments on both
synthetic and real datasets, and results show the proposed approach to be
superior and also performs well in a large-scale setting.
- Abstract(参考訳): 因果発見は、変数の集合の因果構造を明らかにすることを目的としている。
スコアベースアプローチは主に、事前定義されたスコア関数に基づいた最良有向非巡回グラフ(dag)の探索に焦点を当てている。
しかし,探索性に制限があるため,そのほとんどは大規模に適用できない。
生成フローネットワークにおけるアクティブラーニングに触発されて,gflowcausalと呼ばれる観測データからdagを学習する新しい手法を提案する。
グラフ探索問題を生成問題に変換し、直接エッジを徐々に追加する。
GFlowCausalは、事前定義された報酬に比例した確率を持つシーケンシャルアクションによって、ハイリワードDAGを生成するための最良のポリシーを学ぶことを目的としている。
本稿では,効率的なサンプリングを実現するために,過渡的クロージャに基づくプラグアンドプレイモジュールを提案する。
理論的解析により、この加群は非巡回性の性質を効果的に保証し、最終状態と完全連結グラフの間の一貫性を保証できることを示した。
合成データセットと実データセットの両方について広範な実験を行い、提案手法が優れていることを示すとともに、大規模環境での良好な性能を示す。
関連論文リスト
- Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
本稿では,6つの人気グラフと最近のグラフ推薦モデルの結果を再現するコードを提案する。
これらのグラフモデルと従来の協調フィルタリングモデルを比較する。
ユーザの近所からの情報フローを調べることにより,データセット構造における内在的特徴にどのようなモデルが影響するかを同定することを目的とする。
論文 参考訳(メタデータ) (2023-08-01T09:31:44Z) - DAG Matters! GFlowNets Enhanced Explainer For Graph Neural Networks [30.19635147123557]
我々はGFlowNetsベースのGNN Explainer(GFlowExplainer)という生成構造を提案する。
我々のGFlowExplainerは、サブグラフの確率がその報酬に比例するサブグラフの分布を生成するポリシーを学習することを目的としています。
我々は合成データと実データの両方について広範な実験を行い、質的および定量的な結果はGFlowExplainerの優位性を示している。
論文 参考訳(メタデータ) (2023-03-04T16:15:25Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
本研究では,グローバルな視点から複雑な関連性を持つ項目表現を強化するために,グラフコントラスト学習を提案する。
本稿では,CapsNetモジュールを拡張したターゲットアテンション機構により,ユーザの動的嗜好を導出する。
提案したGUESRは,大幅な改善を達成できただけでなく,汎用的な拡張戦略ともみなすことができた。
論文 参考訳(メタデータ) (2023-03-01T05:46:36Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - From Spectral Graph Convolutions to Large Scale Graph Convolutional
Networks [0.0]
グラフ畳み込みネットワーク(GCN)は、様々なタスクにうまく適用された強力な概念であることが示されている。
古典グラフ理論の関連部分を含むGCNの定義への道を開いた理論を考察する。
論文 参考訳(メタデータ) (2022-07-12T16:57:08Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNN) は、グラフ構造化データに保存された高次関係をモデル化する可能性を示した。
我々はHypERgrAph Laplacian aDaptor(HERALD)と呼ばれる適応的なハイパーグラフ構造を構築するための最初の学習ベース手法を提案する。
HERALDは、ハイパーノードとハイパーエッジの隣接関係をエンドツーエンドで適応的に最適化し、タスク認識ハイパーグラフを学習する。
論文 参考訳(メタデータ) (2021-06-12T02:07:07Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
ノードとペアの制約下でのグラフマッチング(GM)は、最適化からコンピュータビジョンまでの領域におけるビルディングブロックである。
GMのための強化学習ソルバを提案する。
rgmはペアワイズグラフ間のノード対応を求める。
本手法は,フロントエンドの特徴抽出と親和性関数学習に焦点をあてるという意味において,従来のディープグラフマッチングモデルと異なる。
論文 参考訳(メタデータ) (2020-12-16T13:48:48Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。