Item-Language Model for Conversational Recommendation
- URL: http://arxiv.org/abs/2406.02844v1
- Date: Wed, 5 Jun 2024 01:35:50 GMT
- Title: Item-Language Model for Conversational Recommendation
- Authors: Li Yang, Anushya Subbiah, Hardik Patel, Judith Yue Li, Yanwei Song, Reza Mirghaderi, Vikram Aggarwal,
- Abstract summary: We propose an Item-Language Model (ILM) to produce text-aligned item representations that encode user interaction signals.
We conduct extensive experiments which demonstrate both the importance of the language-alignment and of user interaction knowledge in the item encoder.
- Score: 10.256524103913666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-language Models (LLMs) have been extremely successful at tasks like complex dialogue understanding, reasoning and coding due to their emergent abilities. These emergent abilities have been extended with multi-modality to include image, audio, and video capabilities. Recommender systems, on the other hand, have been critical for information seeking and item discovery needs. Recently, there have been attempts to apply LLMs for recommendations. One difficulty of current attempts is that the underlying LLM is usually not trained on the recommender system data, which largely contains user interaction signals and is often not publicly available. Another difficulty is user interaction signals often have a different pattern from natural language text, and it is currently unclear if the LLM training setup can learn more non-trivial knowledge from interaction signals compared with traditional recommender system methods. Finally, it is difficult to train multiple LLMs for different use-cases, and to retain the original language and reasoning abilities when learning from recommender system data. To address these three limitations, we propose an Item-Language Model (ILM), which is composed of an item encoder to produce text-aligned item representations that encode user interaction signals, and a frozen LLM that can understand those item representations with preserved pretrained knowledge. We conduct extensive experiments which demonstrate both the importance of the language-alignment and of user interaction knowledge in the item encoder.
Related papers
- Large Language Model Driven Recommendation [34.45328907249946]
The advent of language-driven recommendation has unlocked the use of natural language (NL) interactions for recommendation.
This chapter discusses how LLMs' abilities for general NL reasoning present novel opportunities to build highly personalized RSs.
arXiv Detail & Related papers (2024-08-20T15:36:24Z) - LLMCheckup: Conversational Examination of Large Language Models via Interpretability Tools and Self-Explanations [26.340786701393768]
Interpretability tools that offer explanations in the form of a dialogue have demonstrated their efficacy in enhancing users' understanding.
Current solutions for dialogue-based explanations, however, often require external tools and modules and are not easily transferable to tasks they were not designed for.
We present an easily accessible tool that allows users to chat with any state-of-the-art large language model (LLM) about its behavior.
arXiv Detail & Related papers (2024-01-23T09:11:07Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - AlignedCoT: Prompting Large Language Models via Native-Speaking Demonstrations [52.43593893122206]
Alignedcot is an in-context learning technique for invoking Large Language Models.
It achieves consistent and correct step-wise prompts in zero-shot scenarios.
We conduct experiments on mathematical reasoning and commonsense reasoning.
arXiv Detail & Related papers (2023-11-22T17:24:21Z) - DialogueLLM: Context and Emotion Knowledge-Tuned Large Language Models
for Emotion Recognition in Conversations [28.15933355881604]
Large language models (LLMs) have shown extraordinary efficacy across numerous downstream natural language processing (NLP) tasks.
We propose DialogueLLM, a context and emotion knowledge tuned LLM that is obtained by fine-tuning LLaMA models.
We offer a comprehensive evaluation of our proposed model on three benchmarking emotion recognition in conversations datasets.
arXiv Detail & Related papers (2023-10-17T16:15:34Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - BuboGPT: Enabling Visual Grounding in Multi-Modal LLMs [101.50522135049198]
BuboGPT is a multi-modal LLM with visual grounding that can perform cross-modal interaction between vision, audio and language.
Our contributions are two-fold: 1) An off-the-shelf visual grounding module based on SAM that extracts entities in a sentence and find corresponding masks in the image.
Our experiments show that BuboGPT achieves impressive multi-modality understanding and visual grounding abilities during the interaction with human.
arXiv Detail & Related papers (2023-07-17T15:51:47Z) - Leveraging Large Language Models in Conversational Recommender Systems [9.751217336860924]
A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue.
Large Language Models (LLMs) have exhibited an unprecedented ability to converse naturally and incorporate world knowledge and common-sense reasoning into language understanding.
arXiv Detail & Related papers (2023-05-13T16:40:07Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.