Outdated Issue Aware Decoding for Reasoning Questions on Edited Knowledge
- URL: http://arxiv.org/abs/2406.02882v3
- Date: Sun, 16 Jun 2024 08:50:34 GMT
- Title: Outdated Issue Aware Decoding for Reasoning Questions on Edited Knowledge
- Authors: Zengkui Sun, Yijin Liu, Jiaan Wang, Fandong Meng, Jinan Xu, Yufeng Chen, Jie Zhou,
- Abstract summary: We propose outDated ISsue aware deCOding to enhance the performance of edited models on reasoning questions.
We capture the difference in the probability distribution between the original and edited models.
We amplify the difference of the token prediction in the edited model to alleviate the outdated issue.
- Score: 93.54427119091174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Knowledge Editing has received increasing attention, since it could update the specific knowledge from outdated ones in pretrained models without re-training. However, as pointed out by recent studies, existing related methods tend to merely memorize the superficial word composition of the edited knowledge, rather than truly learning and absorbing it. Consequently, on the reasoning questions, we discover that existing methods struggle to utilize the edited knowledge to reason the new answer, and tend to retain outdated responses, which are generated by the original models utilizing original knowledge. Nevertheless, the outdated responses are unexpected for the correct answers to reasoning questions, which we named as the outdated issue. To alleviate this issue, in this paper, we propose a simple yet effective decoding strategy, i.e., outDated ISsue aware deCOding (DISCO), to enhance the performance of edited models on reasoning questions. Specifically, we capture the difference in the probability distribution between the original and edited models. Further, we amplify the difference of the token prediction in the edited model to alleviate the outdated issue, and thus enhance the model performance w.r.t the edited knowledge. Experimental results suggest that applying DISCO could enhance edited models to reason, e.g., on reasoning questions, DISCO outperforms the prior SOTA method by 12.99 F1 scores, and reduces the ratio of the outdated issue to 5.78% on the zsRE dataset.
Related papers
- Better Call SAUL: Fluent and Consistent Language Model Editing with Generation Regularization [48.07144492109635]
Large language models need to be updated regularly.
Model editing is challenging as it might also affect knowledge that is unrelated to the new data.
We propose SAUL, a streamlined model editing method that uses sentence concatenation with augmented random facts for generation regularization.
arXiv Detail & Related papers (2024-10-03T12:28:13Z) - Detecting Edited Knowledge in Language Models [5.260519479124422]
Knowledge editing methods (KEs) can update language models' obsolete or inaccurate knowledge learned from pre-training.
Knowing whether a generated output is based on edited knowledge or first-hand knowledge from pre-training can increase users' trust in generative models.
We propose a novel task: detecting edited knowledge in language models.
arXiv Detail & Related papers (2024-05-04T22:02:24Z) - History Matters: Temporal Knowledge Editing in Large Language Model [42.74144542674756]
We introduce the task of Temporal Knowledge Editing (TKE) and establish a benchmark AToKe to evaluate current model editing methods.
We find that while existing model editing methods are effective at making models remember new knowledge, the edited model catastrophically forgets historical knowledge.
To address this gap, we propose a simple and general framework termed Multi-Editing with Time Objective (METO) for enhancing existing editing models.
arXiv Detail & Related papers (2023-12-09T07:51:56Z) - R-Tuning: Instructing Large Language Models to Say `I Don't Know' [66.11375475253007]
Large language models (LLMs) have revolutionized numerous domains with their impressive performance but still face their challenges.
Previous instruction tuning methods force the model to complete a sentence no matter whether the model knows the knowledge or not.
We present a new approach called Refusal-Aware Instruction Tuning (R-Tuning)
Experimental results demonstrate R-Tuning effectively improves a model's ability to answer known questions and refrain from answering unknown questions.
arXiv Detail & Related papers (2023-11-16T08:45:44Z) - RECKONING: Reasoning through Dynamic Knowledge Encoding [51.076603338764706]
We show that language models can answer questions by reasoning over knowledge provided as part of the context.
In these situations, the model fails to distinguish the knowledge that is necessary to answer the question.
We propose teaching the model to reason more robustly by folding the provided contextual knowledge into the model's parameters.
arXiv Detail & Related papers (2023-05-10T17:54:51Z) - Adaptively Integrated Knowledge Distillation and Prediction Uncertainty
for Continual Learning [71.43841235954453]
Current deep learning models often suffer from catastrophic forgetting of old knowledge when continually learning new knowledge.
Existing strategies to alleviate this issue often fix the trade-off between keeping old knowledge (stability) and learning new knowledge (plasticity)
arXiv Detail & Related papers (2023-01-18T05:36:06Z) - Remembering for the Right Reasons: Explanations Reduce Catastrophic
Forgetting [100.75479161884935]
We propose a novel training paradigm called Remembering for the Right Reasons (RRR)
RRR stores visual model explanations for each example in the buffer and ensures the model has "the right reasons" for its predictions.
We demonstrate how RRR can be easily added to any memory or regularization-based approach and results in reduced forgetting.
arXiv Detail & Related papers (2020-10-04T10:05:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.