R-Tuning: Instructing Large Language Models to Say `I Don't Know'
- URL: http://arxiv.org/abs/2311.09677v3
- Date: Fri, 7 Jun 2024 02:46:36 GMT
- Title: R-Tuning: Instructing Large Language Models to Say `I Don't Know'
- Authors: Hanning Zhang, Shizhe Diao, Yong Lin, Yi R. Fung, Qing Lian, Xingyao Wang, Yangyi Chen, Heng Ji, Tong Zhang,
- Abstract summary: Large language models (LLMs) have revolutionized numerous domains with their impressive performance but still face their challenges.
Previous instruction tuning methods force the model to complete a sentence no matter whether the model knows the knowledge or not.
We present a new approach called Refusal-Aware Instruction Tuning (R-Tuning)
Experimental results demonstrate R-Tuning effectively improves a model's ability to answer known questions and refrain from answering unknown questions.
- Score: 66.11375475253007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have revolutionized numerous domains with their impressive performance but still face their challenges. A predominant issue is the propensity for these models to generate non-existent facts, a concern termed hallucination. Our research is motivated by the observation that previous instruction tuning methods force the model to complete a sentence no matter whether the model knows the knowledge or not. When the question is out of the parametric knowledge, it will try to make up something and fail to indicate when it lacks knowledge. In this paper, we present a new approach called Refusal-Aware Instruction Tuning (R-Tuning). This approach is formalized by first identifying the disparity in knowledge encompassed by pre-trained parameters compared to that of instruction tuning data. Then, we construct the refusal-aware data based on the knowledge intersection, to tune LLMs to refrain from responding to questions beyond its parametric knowledge. Experimental results demonstrate R-Tuning effectively improves a model's ability to answer known questions and refrain from answering unknown questions. Furthermore, when tested on out-of-domain datasets, the refusal ability was found to be a meta-skill that could be generalized to other tasks. Further analysis surprisingly finds that learning the uncertainty results in better calibration and an improved ability to estimate the uncertainty than uncertainty-based testing. Our code is available at https://github.com/shizhediao/R-Tuning.
Related papers
- Gradual Learning: Optimizing Fine-Tuning with Partially Mastered Knowledge in Large Language Models [51.20499954955646]
Large language models (LLMs) acquire vast amounts of knowledge from extensive text corpora during the pretraining phase.
In later stages such as fine-tuning and inference, the model may encounter knowledge not covered in the initial training.
We propose a two-stage fine-tuning strategy to improve the model's overall test accuracy and knowledge retention.
arXiv Detail & Related papers (2024-10-08T08:35:16Z) - Recursive Introspection: Teaching Language Model Agents How to Self-Improve [30.086494067593268]
We develop RISE: Recursive IntroSpEction, an approach for fine-tuning large language models.
Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks.
arXiv Detail & Related papers (2024-07-25T17:35:59Z) - Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning [18.283963879468466]
Large language models (LLMs) have demonstrated remarkable capabilities but still face challenges such as hallucinations.
We propose a novel approach called uncertainty-sensitive tuning to improve models' capability to recognize the boundaries of their knowledge.
Our experimental results demonstrate that our proposed uncertainty-sensitive tuning method enhance the model's ability to identify areas of uncertainty.
arXiv Detail & Related papers (2024-06-14T14:56:04Z) - Outdated Issue Aware Decoding for Reasoning Questions on Edited Knowledge [93.54427119091174]
We propose outDated ISsue aware deCOding to enhance the performance of edited models on reasoning questions.
We capture the difference in the probability distribution between the original and edited models.
We amplify the difference of the token prediction in the edited model to alleviate the outdated issue.
arXiv Detail & Related papers (2024-06-05T03:00:15Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - RECKONING: Reasoning through Dynamic Knowledge Encoding [51.076603338764706]
We show that language models can answer questions by reasoning over knowledge provided as part of the context.
In these situations, the model fails to distinguish the knowledge that is necessary to answer the question.
We propose teaching the model to reason more robustly by folding the provided contextual knowledge into the model's parameters.
arXiv Detail & Related papers (2023-05-10T17:54:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.