論文の概要: Language-guided Detection and Mitigation of Unknown Dataset Bias
- arxiv url: http://arxiv.org/abs/2406.02889v1
- Date: Wed, 5 Jun 2024 03:11:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:05:49.147611
- Title: Language-guided Detection and Mitigation of Unknown Dataset Bias
- Title(参考訳): 未知データセットバイアスの言語誘導検出と緩和
- Authors: Zaiying Zhao, Soichiro Kumano, Toshihiko Yamasaki,
- Abstract要約: 本稿では,キャプションの部分的発生に基づく事前知識のないキーワードとして潜在的なバイアスを識別する枠組みを提案する。
我々のフレームワークは、事前知識のない既存のメソッドよりも優れているだけでなく、事前知識を前提としたメソッドにさえ匹敵する。
- 参考スコア(独自算出の注目度): 23.299264313976213
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Dataset bias is a significant problem in training fair classifiers. When attributes unrelated to classification exhibit strong biases towards certain classes, classifiers trained on such dataset may overfit to these bias attributes, substantially reducing the accuracy for minority groups. Mitigation techniques can be categorized according to the availability of bias information (\ie, prior knowledge). Although scenarios with unknown biases are better suited for real-world settings, previous work in this field often suffers from a lack of interpretability regarding biases and lower performance. In this study, we propose a framework to identify potential biases as keywords without prior knowledge based on the partial occurrence in the captions. We further propose two debiasing methods: (a) handing over to an existing debiasing approach which requires prior knowledge by assigning pseudo-labels, and (b) employing data augmentation via text-to-image generative models, using acquired bias keywords as prompts. Despite its simplicity, experimental results show that our framework not only outperforms existing methods without prior knowledge, but also is even comparable with a method that assumes prior knowledge.
- Abstract(参考訳): データセットバイアスは、公平な分類器を訓練する上で重要な問題である。
分類と無関係な属性が特定のクラスに対して強いバイアスを示す場合、そのようなデータセットで訓練された分類器はこれらのバイアス属性に過度に適合し、少数群の精度を著しく低下させる。
緩和技術はバイアス情報(つまり事前知識)の可用性に応じて分類することができる。
未知のバイアスのあるシナリオは現実世界の設定に適しているが、この分野での以前の作業は、バイアスに関する解釈可能性の欠如とパフォーマンスの低下に悩まされることが多い。
本研究では,キャプションの部分的発生に基づく事前知識のないキーワードとして潜在的なバイアスを識別する枠組みを提案する。
さらに2つのデバイアス法を提案する。
(a)擬似ラベルを割り当てて事前知識を必要とする既存の嫌悪的アプローチを譲り受け、
b) 取得したバイアスキーワードをプロンプトとして,テキストから画像への生成モデルによるデータ拡張を利用する。
その単純さにもかかわらず、実験結果から、我々のフレームワークは、事前知識なしで既存のメソッドよりも優れているだけでなく、事前知識を前提としたメソッドにさえ匹敵することを示した。
関連論文リスト
- Unlabeled Debiasing in Downstream Tasks via Class-wise Low Variance Regularization [13.773597081543185]
本稿では,組込みのクラスワイドな分散に基づく新しいデバイアス正規化手法を提案する。
提案手法は属性ラベルを必要とせず,属性をターゲットとせず,既存のデバイアス手法の欠点に対処する。
論文 参考訳(メタデータ) (2024-09-29T03:56:50Z) - Say My Name: a Model's Bias Discovery Framework [18.887645415907166]
Say My Name'(SaMyNa)は、ディープモデル内のバイアスを意味的に識別する最初のツールです。
既存の方法とは異なり、私たちのアプローチはモデルによって学習されたバイアスに焦点を当てています。
本手法は,タスク関連情報をアンタングル化し,偏見を解析するためのツールとして提案する。
論文 参考訳(メタデータ) (2024-08-18T18:50:59Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
近年の研究では、事前学習言語モデル(PLM)が、事実知識抽出において「急激なバイアス」に悩まされていることが示されている。
本稿では,突発バイアスを徹底的に調査し緩和することにより,既存のベンチマークの信頼性を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-03-15T02:04:35Z) - Systematic Evaluation of Predictive Fairness [60.0947291284978]
バイアス付きデータセットのトレーニングにおけるバイアスの緩和は、重要なオープンな問題である。
複数のタスクにまたがる様々なデバイアス化手法の性能について検討する。
データ条件が相対モデルの性能に強い影響を与えることがわかった。
論文 参考訳(メタデータ) (2022-10-17T05:40:13Z) - Learning Debiased Classifier with Biased Committee [30.417623580157834]
ニューラルネットワークは、トレーニングデータの大部分で示されるクラスと潜在属性の急激な相関に偏りがちである。
そこで本研究では,突発性属性ラベルを持たない脱バイアス分類器を訓練するための新しい手法を提案する。
実世界の5つのデータセットにおいて、我々の手法は、私たちのような刺激的な属性ラベルを使わずに先行技術より優れており、時にはバイアスラベルに依存するものよりも優れています。
論文 参考訳(メタデータ) (2022-06-22T04:50:28Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
ディープニューラルネットワークは、データセットにバイアスが存在するときに堅牢な表現を学習できないことで知られている。
我々は3つのステップからなる完全に教師なしの脱バイアスフレームワークを提案する。
我々は、非バイアスモデルを得るために最先端の教師付き脱バイアス技術を採用している。
論文 参考訳(メタデータ) (2022-04-26T10:51:50Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
本研究では, バイアスラベルを正確に把握せず, 脱バイアス胸部X線診断モデルの開発について検討した。
本稿では,まずサンプルごとのバイアスラベルをキャプチャし,予測する新しいアルゴリズム,擬似バイアスバランス学習を提案する。
提案手法は他の最先端手法よりも一貫した改善を実現した。
論文 参考訳(メタデータ) (2022-03-18T11:02:18Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
自然言語処理におけるバイアスは、性別や人種などの著者の特徴を学習するモデルから生じる。
既存のバイアスの緩和と測定方法は、著者の人口統計学と言語変数の相関を直接考慮していない。
本稿では,インスタンス再重み付けを用いたバイアス対策法を提案する。
論文 参考訳(メタデータ) (2021-09-16T23:40:28Z) - Towards Learning an Unbiased Classifier from Biased Data via Conditional
Adversarial Debiasing [17.113618920885187]
本稿では,訓練画像のラベルに急激に結びついている特徴に対処する,新しい逆脱バイアス法を提案する。
我々は、上記の偏見に対する既存の手法よりも、我々のアプローチが優れているという数学的証明によって論じる。
実験の結果,本手法は猫や犬の実世界画像を用いたベンチマークデータセットにおいて,最先端技術よりも優れた性能を示すことがわかった。
論文 参考訳(メタデータ) (2021-03-10T16:50:42Z) - Towards Debiasing NLU Models from Unknown Biases [70.31427277842239]
NLUモデルは、しばしばバイアスを利用して、意図したタスクを適切に学習することなく、データセット固有の高いパフォーマンスを達成する。
本稿では、モデルがバイアスを事前に知ることなく、主にバイアスを利用するのを防ぐ自己バイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-25T15:49:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。