論文の概要: Say My Name: a Model's Bias Discovery Framework
- arxiv url: http://arxiv.org/abs/2408.09570v1
- Date: Sun, 18 Aug 2024 18:50:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 18:14:03.990701
- Title: Say My Name: a Model's Bias Discovery Framework
- Title(参考訳): モデルのバイアス発見フレームワーク「Some My Name」
- Authors: Massimiliano Ciranni, Luca Molinaro, Carlo Alberto Barbano, Attilio Fiandrotti, Vittorio Murino, Vito Paolo Pastore, Enzo Tartaglione,
- Abstract要約: Say My Name'(SaMyNa)は、ディープモデル内のバイアスを意味的に識別する最初のツールです。
既存の方法とは異なり、私たちのアプローチはモデルによって学習されたバイアスに焦点を当てています。
本手法は,タスク関連情報をアンタングル化し,偏見を解析するためのツールとして提案する。
- 参考スコア(独自算出の注目度): 18.887645415907166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last few years, due to the broad applicability of deep learning to downstream tasks and end-to-end training capabilities, increasingly more concerns about potential biases to specific, non-representative patterns have been raised. Many works focusing on unsupervised debiasing usually leverage the tendency of deep models to learn ``easier'' samples, for example by clustering the latent space to obtain bias pseudo-labels. However, the interpretation of such pseudo-labels is not trivial, especially for a non-expert end user, as it does not provide semantic information about the bias features. To address this issue, we introduce ``Say My Name'' (SaMyNa), the first tool to identify biases within deep models semantically. Unlike existing methods, our approach focuses on biases learned by the model. Our text-based pipeline enhances explainability and supports debiasing efforts: applicable during either training or post-hoc validation, our method can disentangle task-related information and proposes itself as a tool to analyze biases. Evaluation on traditional benchmarks demonstrates its effectiveness in detecting biases and even disclaiming them, showcasing its broad applicability for model diagnosis.
- Abstract(参考訳): ここ数年、下流タスクへのディープラーニングの適用性とエンドツーエンドのトレーニング能力により、特定の非表現パターンに対する潜在的なバイアスに対する懸念がますます高まっている。
教師なしの偏見に焦点をあてる多くの研究は、例えば、バイアスの擬似ラベルを得るために潜伏空間をクラスタ化することによって、'easier'サンプルを学ぶために、ディープモデルの傾向を利用する。
しかし、そのような擬似ラベルの解釈は、特に非専門家のエンドユーザーにとっては、バイアスの特徴に関する意味情報を提供しないため、簡単ではない。
この問題に対処するために、深層モデルのバイアスを意味的に識別する最初のツールである`Say My Name'' (SaMyNa)を紹介します。
既存の方法とは異なり、私たちのアプローチはモデルによって学習されたバイアスに焦点を当てています。
我々のテキストベースのパイプラインは、説明可能性を高め、デバイアス化の取り組みをサポートする。トレーニングまたはポストホックバリデーションのいずれにおいても、タスク関連の情報をアンタングルし、偏見を解析するためのツールとしてそれ自身を提案する。
従来のベンチマークによる評価は、バイアスを検出したり、それを破棄する効果を示し、モデル診断に広く適用可能であることを示している。
関連論文リスト
- Language-guided Detection and Mitigation of Unknown Dataset Bias [23.299264313976213]
本稿では,キャプションの部分的発生に基づく事前知識のないキーワードとして潜在的なバイアスを識別する枠組みを提案する。
我々のフレームワークは、事前知識のない既存のメソッドよりも優れているだけでなく、事前知識を前提としたメソッドにさえ匹敵する。
論文 参考訳(メタデータ) (2024-06-05T03:11:33Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
本稿では,テキスト埋め込みにおけるバイアスのある方向を投影することで,視覚言語基盤モデルを疎外する一般的な手法を提案する。
偏平投影行列を組み込んだテキストのみをデバイアスすることで、ロバストな分類器と公正な生成モデルが得られることを示す。
論文 参考訳(メタデータ) (2023-01-31T20:09:33Z) - Self-supervised debiasing using low rank regularization [59.84695042540525]
純粋な相関は、ディープニューラルネットワークの強いバイアスを引き起こし、一般化能力を損なう可能性がある。
ラベルのないサンプルと互換性のある自己監督型脱バイアスフレームワークを提案する。
注目すべきは,提案フレームワークが自己教師付き学習ベースラインの一般化性能を著しく向上させることである。
論文 参考訳(メタデータ) (2022-10-11T08:26:19Z) - Unsupervised Learning of Unbiased Visual Representations [10.871587311621974]
ディープニューラルネットワークは、データセットにバイアスが存在するときに堅牢な表現を学習できないことで知られている。
我々は3つのステップからなる完全に教師なしの脱バイアスフレームワークを提案する。
我々は、非バイアスモデルを得るために最先端の教師付き脱バイアス技術を採用している。
論文 参考訳(メタデータ) (2022-04-26T10:51:50Z) - Pseudo Bias-Balanced Learning for Debiased Chest X-ray Classification [57.53567756716656]
本研究では, バイアスラベルを正確に把握せず, 脱バイアス胸部X線診断モデルの開発について検討した。
本稿では,まずサンプルごとのバイアスラベルをキャプチャし,予測する新しいアルゴリズム,擬似バイアスバランス学習を提案する。
提案手法は他の最先端手法よりも一貫した改善を実現した。
論文 参考訳(メタデータ) (2022-03-18T11:02:18Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Learning Debiased Models with Dynamic Gradient Alignment and
Bias-conflicting Sample Mining [39.00256193731365]
ディープニューラルネットワークは、堅牢性、一般化、公正性をモデル化するのに有害なデータセットバイアスに悩まされている。
難解な未知のバイアスと戦うための2段階のデバイアス方式を提案する。
論文 参考訳(メタデータ) (2021-11-25T14:50:10Z) - Don't Discard All the Biased Instances: Investigating a Core Assumption
in Dataset Bias Mitigation Techniques [19.252319300590656]
データセットバイアスを緩和する既存のテクニックは、バイアス付きモデルを利用してバイアス付きインスタンスを識別することが多い。
これらの偏りのあるインスタンスの役割は、メインモデルのトレーニング中に減少し、アウト・オブ・ディストリビューションデータに対するロバスト性を高める。
本稿では,この仮定が一般には成り立たないことを示す。
論文 参考訳(メタデータ) (2021-09-01T10:25:46Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - Towards Debiasing NLU Models from Unknown Biases [70.31427277842239]
NLUモデルは、しばしばバイアスを利用して、意図したタスクを適切に学習することなく、データセット固有の高いパフォーマンスを達成する。
本稿では、モデルがバイアスを事前に知ることなく、主にバイアスを利用するのを防ぐ自己バイアスフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-25T15:49:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。