論文の概要: S$^2$GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2406.02902v1
- Date: Wed, 5 Jun 2024 03:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:05:49.132804
- Title: S$^2$GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis
- Title(参考訳): S$^2$GSL:Aspect-based Sentiment Analysisのための構文強化グラフ構造学習へのセグメントの導入
- Authors: Bingfeng Chen, Qihan Ouyang, Yongqi Luo, Boyan Xu, Ruichu Cai, Zhifeng Hao,
- Abstract要約: ABSAのための構文強化グラフ構造学習にセグメンテーションを取り入れた2$GSLを提案する。
S$2$GSLはセグメント対応セマンティックグラフ学習と構文ベースの潜在グラフ学習を備えている。
- 参考スコア(独自算出の注目度): 19.740223755240734
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous graph-based approaches in Aspect based Sentiment Analysis(ABSA) have demonstrated impressive performance by utilizing graph neural networks and attention mechanisms to learn structures of static dependency trees and dynamic latent trees. However, incorporating both semantic and syntactic information simultaneously within complex global structures can introduce irrelevant contexts and syntactic dependencies during the process of graph structure learning, potentially resulting in inaccurate predictions. In order to address the issues above, we propose S$^2$GSL, incorporating Segment to Syntactic enhanced Graph Structure Learning for ABSA. Specifically,S$^2$GSL is featured with a segment-aware semantic graph learning and a syntax-based latent graph learning enabling the removal of irrelevant contexts and dependencies, respectively. We further propose a self-adaptive aggregation network that facilitates the fusion of two graph learning branches, thereby achieving complementarity across diverse structures. Experimental results on four benchmarks demonstrate the effectiveness of our framework.
- Abstract(参考訳): Aspect based Sentiment Analysis(ABSA)における従来のグラフベースのアプローチは、静的依存木や動的潜伏木の構造を学習するためにグラフニューラルネットワークとアテンション機構を活用することで、優れたパフォーマンスを示している。
しかし、複雑なグローバル構造にセマンティック情報と構文情報を同時に組み込むことは、グラフ構造学習の過程で無関係な文脈や構文依存を導入し、不正確な予測をもたらす可能性がある。
上記の問題に対処するために,Segment と Syntactic enhanced Graph Structure Learning for ABSA を取り入れた S$^2$GSL を提案する。
具体的には、S$^2$GSLにはセグメンテーションを意識したセマンティックグラフ学習と、無関係なコンテキストと依存関係の削除を可能にする構文ベースの潜在グラフ学習が特徴である。
さらに,2つのグラフ学習分野の融合を容易にし,多様な構造をまたいだ相補性を実現する自己適応型集約ネットワークを提案する。
4つのベンチマークによる実験結果から,本フレームワークの有効性が示された。
関連論文リスト
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-Decomposition) は、生のテキスト属性を分析してグラフ構造を分解する新しいフレームワークである。
我々のフレームワークは、さまざまなデータセットのノード分類性能を大幅に向上させ、ウィスコンシンデータセットでは最大16%の改善を実現した。
論文 参考訳(メタデータ) (2024-05-28T20:54:47Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Graph-level Protein Representation Learning by Structure Knowledge
Refinement [50.775264276189695]
本稿では、教師なしの方法でグラフ全体の表現を学習することに焦点を当てる。
本稿では、データ構造を用いて、ペアが正か負かの確率を決定する構造知識精製(Structure Knowledge Refinement, SKR)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-05T09:05:33Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
グラフ構造学習は、欠落したリンクを追加し、スプリアス接続を取り除くことで、入力グラフの精細化を可能にする。
グラフ構造学習におけるこれまでの取り組みは、主に教師付き設定を中心に行われてきた。
グラフクラスタリングのためのtextbfhomophily-enhanced structure textbflearning という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-10T02:53:30Z) - Explainable Representations for Relation Prediction in Knowledge Graphs [0.0]
本稿では、知識グラフにおける関係予測を支援するための説明可能な表現のための新しいアプローチであるSEEKを提案する。
それは、エンティティと各サブグラフの学習表現の間の関連する共有意味的側面を識別することに基づいている。
本研究では,タンパク質間相互作用予測と遺伝子発現関連予測の2つの実世界の関係予測タスクについてSEEKを評価した。
論文 参考訳(メタデータ) (2023-06-22T06:18:40Z) - Semantic Random Walk for Graph Representation Learning in Attributed
Graphs [2.318473106845779]
本稿では,2つの異種ソースの結合最適化を高次近接ベースフレームワークに定式化するための新しい意味グラフ表現(SGR)法を提案する。
高次トポロジ確率を考慮した従来の埋め込み法は、新しく構築されたグラフに容易に適用でき、ノードと属性の両方の表現を学習することができる。
学習された属性の埋め込みは、セマンティック指向の推論タスクを効果的にサポートし、グラフの深いセマンティックを明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-05-11T02:35:16Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
グラフニューラルネットワーク(GNN)は、構造的データ学習のデファクトソリューションである。
既存のグラフ構造学習(GSL)フレームワークには、堅牢性と解釈性がない。
本稿では、構造エントロピーと符号化木に抽象化されたグラフ階層を通して、一般的なGSLフレームワークSE-GSLを提案する。
論文 参考訳(メタデータ) (2023-03-17T05:20:24Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。