論文の概要: Graph Self-Supervised Learning with Learnable Structural and Positional Encodings
- arxiv url: http://arxiv.org/abs/2502.16233v1
- Date: Sat, 22 Feb 2025 14:10:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:57:20.557767
- Title: Graph Self-Supervised Learning with Learnable Structural and Positional Encodings
- Title(参考訳): 学習可能な構造と位置の符号化によるグラフ自己教師付き学習
- Authors: Asiri Wijesinghe, Hao Zhu, Piotr Koniusz,
- Abstract要約: 我々は、$k$-hopメッセージパッシングスキームを統合したGNNフレームワークであるemphGenHopNetを紹介する。
また,学習過程全体を通してトポロジ的情報を組み込んだ構造的および位置対応GSSLフレームワークを提案する。
我々の研究は、類似の局所構造を持つグラフと異なるグローバルトポロジを持つグラフを区別するGSSLの能力を大幅に向上させた。
- 参考スコア(独自算出の注目度): 39.20899720477907
- License:
- Abstract: Traditional Graph Self-Supervised Learning (GSSL) struggles to capture complex structural properties well. This limitation stems from two main factors: (1) the inadequacy of conventional Graph Neural Networks (GNNs) in representing sophisticated topological features, and (2) the focus of self-supervised learning solely on final graph representations. To address these issues, we introduce \emph{GenHopNet}, a GNN framework that integrates a $k$-hop message-passing scheme, enhancing its ability to capture local structural information without explicit substructure extraction. We theoretically demonstrate that \emph{GenHopNet} surpasses the expressiveness of the classical Weisfeiler-Lehman (WL) test for graph isomorphism. Furthermore, we propose a structural- and positional-aware GSSL framework that incorporates topological information throughout the learning process. This approach enables the learning of representations that are both sensitive to graph topology and invariant to specific structural and feature augmentations. Comprehensive experiments on graph classification datasets, including those designed to test structural sensitivity, show that our method consistently outperforms the existing approaches and maintains computational efficiency. Our work significantly advances GSSL's capability in distinguishing graphs with similar local structures but different global topologies.
- Abstract(参考訳): 従来のグラフ自己監視学習(GSSL)は、複雑な構造特性をうまく捉えるのに苦労している。
この制限は,(1)洗練されたトポロジ的特徴を表す従来のグラフニューラルネットワーク(GNN)の不適切さ,(2)最終グラフ表現にのみ焦点を絞った自己教師型学習という2つの要因に起因している。
これらの問題に対処するために、$k$-hopメッセージパッシングスキームを統合したGNNフレームワークである \emph{GenHopNet} を導入する。
理論的には、グラフ同型に対する古典的なWeisfeiler-Lehman (WL) テストの表現性を超えている。
さらに,学習プロセス全体を通してトポロジ情報を組み込んだ構造的および位置対応GSSLフレームワークを提案する。
このアプローチは、グラフトポロジーに敏感で、特定の構造的および特徴的拡張に不変な表現の学習を可能にする。
構造感度試験を含むグラフ分類データセットに関する総合的な実験により,本手法が既存の手法より一貫して優れ,計算効率が向上していることが示された。
我々の研究は、類似の局所構造を持つグラフと異なるグローバルトポロジを持つグラフを区別するGSSLの能力を大幅に向上させた。
関連論文リスト
- GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck [5.943641527857957]
我々は,TextitGlobal-augmented Graph Structure Learning (GaGSL) という新しい手法を提案する。
GaGSLの背景にある重要な考え方は、ノード分類タスクのためのコンパクトで情報的なグラフ構造を学ぶことである。
さまざまなデータセットにわたる包括的な評価は、最先端の手法と比較して、GaGSLの優れた性能と堅牢性を示している。
論文 参考訳(メタデータ) (2024-11-07T01:23:48Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Motif-driven Subgraph Structure Learning for Graph Classification [25.205435425328215]
グラフ構造学習(GSL)は、グラフ構造を改善し、下流タスクのパフォーマンスを高めるための有望なアプローチとして登場した。
グラフ分類のための新しいモチーフ駆動サブグラフ構造学習法(MOSGSL)を提案する。
論文 参考訳(メタデータ) (2024-06-13T07:50:44Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
グラフ構造学習は、欠落したリンクを追加し、スプリアス接続を取り除くことで、入力グラフの精細化を可能にする。
グラフ構造学習におけるこれまでの取り組みは、主に教師付き設定を中心に行われてきた。
グラフクラスタリングのためのtextbfhomophily-enhanced structure textbflearning という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-10T02:53:30Z) - Self-organization Preserved Graph Structure Learning with Principle of
Relevant Information [72.83485174169027]
PRI-GSLは、自己組織化を特定し、隠された構造を明らかにするグラフ構造学習フレームワークである。
PRI-GSLは、フォン・ノイマンエントロピーと量子ジェンセン=シャノンの発散によって定量化された最も関連性が最も低い冗長な情報を含む構造を学ぶ。
論文 参考訳(メタデータ) (2022-12-30T16:02:02Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
論文 参考訳(メタデータ) (2022-09-02T02:49:19Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。