A Self-Supervised Denoising Strategy for Underwater Acoustic Camera Imageries
- URL: http://arxiv.org/abs/2406.02914v1
- Date: Wed, 5 Jun 2024 04:07:37 GMT
- Title: A Self-Supervised Denoising Strategy for Underwater Acoustic Camera Imageries
- Authors: Xiaoteng Zhou, Katsunori Mizuno, Yilong Zhang,
- Abstract summary: This paper introduces a novel strategy for denoising acoustic camera images using deep learning techniques.
It successfully removes noise while preserving fine feature details, thereby enhancing the performance of local feature matching.
- Score: 3.0918473503782042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In low-visibility marine environments characterized by turbidity and darkness, acoustic cameras serve as visual sensors capable of generating high-resolution 2D sonar images. However, acoustic camera images are interfered with by complex noise and are difficult to be directly ingested by downstream visual algorithms. This paper introduces a novel strategy for denoising acoustic camera images using deep learning techniques, which comprises two principal components: a self-supervised denoising framework and a fine feature-guided block. Additionally, the study explores the relationship between the level of image denoising and the improvement in feature-matching performance. Experimental results show that the proposed denoising strategy can effectively filter acoustic camera images without prior knowledge of the noise model. The denoising process is nearly end-to-end without complex parameter tuning and post-processing. It successfully removes noise while preserving fine feature details, thereby enhancing the performance of local feature matching.
Related papers
- Image Denoising via Style Disentanglement [9.38519460509602]
We propose a novel approach to image denoising that offers both clear denoising mechanism and good performance.
We view noise as a type of image style and remove it by incorporating noise-free styles derived from clean images.
We conduct extensive experiments on synthetic noise removal and real-world image denoising datasets.
arXiv Detail & Related papers (2023-09-26T08:29:33Z) - Blind2Sound: Self-Supervised Image Denoising without Residual Noise [5.192255321684027]
Self-supervised blind denoising for Poisson-Gaussian noise remains a challenging task.
We propose Blind2Sound, a simple yet effective approach to overcome residual noise in denoised images.
arXiv Detail & Related papers (2023-03-09T11:21:59Z) - Noise2SR: Learning to Denoise from Super-Resolved Single Noisy
Fluorescence Image [9.388253054229155]
Noise2SR is designed for training with paired noisy images of different dimensions.
It is more efficiently self-supervised and able to restore more image details from a single noisy observation.
We envision that Noise2SR has the potential to improve more other kind of scientific imaging quality.
arXiv Detail & Related papers (2022-09-14T04:44:41Z) - Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images [35.29066692454865]
This paper proposes a framework for training a noise model and a denoiser simultaneously.
It relies on pairs of noisy images rather than noisy/clean paired image data.
The trained denoiser is shown to significantly improve upon both supervised and weakly supervised baseline denoising approaches.
arXiv Detail & Related papers (2022-06-02T15:31:40Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
We propose a swin-conv block to incorporate the local modeling ability of residual convolutional layer and non-local modeling ability of swin transformer block.
For the training data synthesis, we design a practical noise degradation model which takes into consideration different kinds of noise.
Experiments on AGWN removal and real image denoising demonstrate that the new network architecture design achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-03-24T18:11:31Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
We study the noise statistics in the imaging pipeline of CMOS photosensors.
We formulate a comprehensive noise model that can accurately characterize the real noise structures.
Our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms.
arXiv Detail & Related papers (2021-08-04T16:36:29Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
We introduce Noise2Same, a novel self-supervised denoising framework.
In particular, Noise2Same requires neither J-invariance nor extra information about the noise model.
Our results show that our Noise2Same remarkably outperforms previous self-supervised denoising methods.
arXiv Detail & Related papers (2020-10-22T18:12:26Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
Low-light images suffer from poor visibility caused by low contrast, color distortion and measurement noise.
This paper proposes a deep learning method for low-light image enhancement with a particular focus on handling the measurement noise.
The proposed method is very competitive to the state-of-the-art methods, and has significant advantage over others when processing images captured in extremely low lighting conditions.
arXiv Detail & Related papers (2020-07-04T06:26:44Z) - NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis [5.645552640953684]
This paper proposes a gradual denoising strategy that iteratively detects the dominating noise in an image, and removes it using a tailored denoiser.
The method provides an insight on the nature of the encountered noise, and it makes it possible to extend an existing denoiser with new noise nature.
arXiv Detail & Related papers (2020-02-18T11:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.