Shaping the topology of twisted bilayer graphene via time-reversal symmetry breaking
- URL: http://arxiv.org/abs/2406.02947v1
- Date: Wed, 5 Jun 2024 05:14:28 GMT
- Title: Shaping the topology of twisted bilayer graphene via time-reversal symmetry breaking
- Authors: Cunyuan Jiang, Matteo Baggioli, Qing-Dong Jiang,
- Abstract summary: We utilize time-reversal symmetry breaking to manipulate the topological properties of twisted bilayer graphene (TBG)
By varying the strength of TRSB, we discover a topological phase transition between a topological insulating phase, which exhibits a pair of flat bands with opposite Chern numbers.
We show that this novel electronic phase can be identified in the lab by measuring, as a function of the Fermi energy, its non-quantized anomalous Hall conductivity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Symmetry breaking is an effective tool for tuning the transport and topological properties of 2D layered materials. Among these materials, twisted bilayer graphene (TBG) has emerged as a promising platform for new physics, characterized by a rich interplay between topological features and strongly correlated electronic behavior. In this study, we utilize time-reversal symmetry breaking (TRSB) to manipulate the topological properties of TBG. By varying the strength of TRSB, we discover a topological phase transition between a topological insulating phase, which exhibits a pair of flat bands with opposite Chern numbers, and a novel insulating state where the Chern number, but not the Berry curvature, of the flat bands vanishes. We demonstrate that this topological transition is mediated by a gap closing at the $\Gamma$ point, and we construct a three-dimensional phase diagram as a function of the twisting angle, the symmetry-breaking parameter, and the mismatch coupling between AA and AB stacking regions. Finally, we show that this novel electronic phase can be identified in the lab by measuring, as a function of the Fermi energy, its non-quantized anomalous Hall conductivity that is induced by the Berry dipole density of the lowest flat bands.
Related papers
- Engineering flat bands in twisted-bilayer graphene away from the magic angle with chiral optical cavities [0.0]
We show that by employing chiral optical cavities, the topological flat bands can be stabilized away from the magic angle.
Time reversal symmetry breaking plays a fundamental role in flattening the isolated bands and gapping out the rest of the spectrum.
Our results demonstrate the possibility of engineering flat bands in TBG using optical devices.
arXiv Detail & Related papers (2023-06-08T12:17:44Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Noise-resilient Edge Modes on a Chain of Superconducting Qubits [103.93329374521808]
Inherent symmetry of a quantum system may protect its otherwise fragile states.
We implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $mathbbZ$ parity symmetry.
MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism.
arXiv Detail & Related papers (2022-04-24T22:34:15Z) - Triggering a global density wave instability in graphene via local
symmetry-breaking [0.7437459197111806]
Two-dimensional quantum materials offer a robust platform for investigating the emergence of symmetry-broken ordered phases.
We show that an extremely dilute concentration of surface adatoms can trigger the collapse of the graphene atomic lattice into a distinct Kekul'e bond density wave phase.
Our results demonstrate that dilute concentrations of self-assembled adsorbed atoms offer an attractive alternative route towards designing novel quantum phases in two-dimensional materials.
arXiv Detail & Related papers (2022-04-23T05:58:00Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Ultrafast and Strong-Field Physics in Graphene-Like Crystals: Bloch Band
Topology and High-Harmonic Generation [0.0]
This letter introduces a theoretical framework for the nonperturbative electron dynamics in two-dimensional (2D) crystalline solids induced by the few-cycle and strong-field optical lasers.
In our theoretical experiment on 2D materials in the strong-field optical regime, we show that Bloch band topology and broken symmetry manifest themselves in several ways.
arXiv Detail & Related papers (2021-01-10T22:32:44Z) - Devil's staircase of topological Peierls insulators and Peierls
supersolids [0.0]
We consider a mixture of ultracold bosonic atoms on a one-dimensional lattice described by the XXZ-Bose-Hubbard model.
We show how the inclusion of antiferromagnetic interactions among the spin degrees of freedom generates a Devil's staircase of symmetry-protected topological phases.
arXiv Detail & Related papers (2020-11-18T11:58:16Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer
Graphene/WSe$_2$ Heterostructure [0.4899818550820575]
Topological insulators, along with Chern insulators and Quantum Hall insulator phases, are considered as paradigms for symmetry protected topological phases of matter.
This article reports the experimental realization of the time-reversal invariant helical edge-modes in bilayer graphene/monolayer WSe$$-based heterostructures.
arXiv Detail & Related papers (2020-03-23T14:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.