Triggering a global density wave instability in graphene via local
symmetry-breaking
- URL: http://arxiv.org/abs/2204.10999v1
- Date: Sat, 23 Apr 2022 05:58:00 GMT
- Title: Triggering a global density wave instability in graphene via local
symmetry-breaking
- Authors: Amy C. Qu, Pascal Nigge, Stefan Link, Giorgio Levy, Matteo Michiardi,
Parsa L. Spandar, Tiffany Matth\'e, Michael Schneider, Sergey Zhdanovich,
Ulrich Starke, Christopher Guti\'errez, Andrea Damascelli
- Abstract summary: Two-dimensional quantum materials offer a robust platform for investigating the emergence of symmetry-broken ordered phases.
We show that an extremely dilute concentration of surface adatoms can trigger the collapse of the graphene atomic lattice into a distinct Kekul'e bond density wave phase.
Our results demonstrate that dilute concentrations of self-assembled adsorbed atoms offer an attractive alternative route towards designing novel quantum phases in two-dimensional materials.
- Score: 0.7437459197111806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-dimensional quantum materials offer a robust platform for investigating
the emergence of symmetry-broken ordered phases owing to the high tuneability
of their electronic properties. For instance, the ability to create new
electronic band structures in graphene through moir\'e superlattices from
stacked and twisted structures has led to the discovery of several correlated
and topological phases. Here we report an alternative method to induce an
incipient symmetry-broken phase in graphene at the millimetre scale. We show
that an extremely dilute concentration ($<\!0.3\% $) of surface adatoms can
self-assemble and trigger the collapse of the graphene atomic lattice into a
distinct Kekul\'e bond density wave phase, whereby the carbon C-C bond symmetry
is broken globally. Using complementary momentum-resolved techniques such as
angle-resolved photoemission spectroscopy (ARPES) and low-energy electron
diffraction (LEED), we directly probe the presence of this density wave phase
and confirm the opening of an energy gap at the Dirac point. We further show
that this Kekul\'e density wave phase occurs for various Fermi surface sizes
and shapes, suggesting that this lattice instability is driven by strong
electron-lattice interactions. Our results demonstrate that dilute
concentrations of self-assembled adsorbed atoms offer an attractive alternative
route towards designing novel quantum phases in two-dimensional materials.
Related papers
- Shaping the topology of twisted bilayer graphene via time-reversal symmetry breaking [0.0]
We utilize time-reversal symmetry breaking to manipulate the topological properties of twisted bilayer graphene (TBG)
By varying the strength of TRSB, we discover a topological phase transition between a topological insulating phase, which exhibits a pair of flat bands with opposite Chern numbers.
We show that this novel electronic phase can be identified in the lab by measuring, as a function of the Fermi energy, its non-quantized anomalous Hall conductivity.
arXiv Detail & Related papers (2024-06-05T05:14:28Z) - Influence of catastrophes and hidden dynamical symmetries on ultrafast backscattered photoelectrons [0.0]
We discuss the effect of using potentials with a Coulomb tail and different degrees of softening in the photoelectron momentum distributions.
We show that introducing a softening in the Coulomb interaction influences the ridges observed in the PMDs associated with backscattered electron trajectories.
arXiv Detail & Related papers (2024-03-04T17:53:01Z) - Confined Meson Excitations in Rydberg-Atom Arrays Coupled to a Cavity
Field [0.0]
Confinement is a pivotal phenomenon in numerous models of high-energy and statistical physics.
In this study, we investigate the emergence of confined meson excitations within a one-dimensional system, comprising Rydberg-dressed atoms trapped and coupled to a cavity field.
We suggest a method for the photonic characterization of these confined excitations, utilizing homodyne detection and single-site imaging techniques to observe the localized particles.
arXiv Detail & Related papers (2023-12-28T22:18:27Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Emergent intersubband-plasmon-polaritons of Dirac electrons under
one-dimensional superlattices [0.0]
We show that an extreme modulation of one-dimensional (1D) SL potentials in monolayer graphene deforms the underlying Dirac band dispersion.
This results in emergent intersubband polaritonic responses in optical conductivity.
Our study opens up an avenue for exploring emergent polaritons in two-dimensional materials with gate-tunable electronic band structures.
arXiv Detail & Related papers (2022-03-25T18:18:27Z) - Localization and melting of interfaces in the two-dimensional quantum
Ising model [0.0]
We study the non-equilibrium evolution of coexisting ferromagnetic domains in the two-dimensional quantum Ising model.
We demonstrate that the quantum-fluctuating interface delimiting a large bubble can be studied as an effective one-dimensional system.
arXiv Detail & Related papers (2022-03-17T17:48:51Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.