論文の概要: Phy-Diff: Physics-guided Hourglass Diffusion Model for Diffusion MRI Synthesis
- arxiv url: http://arxiv.org/abs/2406.03002v2
- Date: Wed, 10 Jul 2024 15:17:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 20:50:13.019414
- Title: Phy-Diff: Physics-guided Hourglass Diffusion Model for Diffusion MRI Synthesis
- Title(参考訳): Phy-Diff:拡散MRI合成のための物理誘導フールグラス拡散モデル
- Authors: Juanhua Zhang, Ruodan Yan, Alessandro Perelli, Xi Chen, Chao Li,
- Abstract要約: 本稿では,高画質のdMRIを生成する物理誘導拡散モデルを提案する。
本モデルは拡散過程におけるノイズ進化におけるdMRIの物理原理を紹介する。
実験の結果,本手法は他の最先端手法よりも優れていた。
- 参考スコア(独自算出の注目度): 45.074243735766
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion MRI (dMRI) is an important neuroimaging technique with high acquisition costs. Deep learning approaches have been used to enhance dMRI and predict diffusion biomarkers through undersampled dMRI. To generate more comprehensive raw dMRI, generative adversarial network based methods are proposed to include b-values and b-vectors as conditions, but they are limited by unstable training and less desirable diversity. The emerging diffusion model (DM) promises to improve generative performance. However, it remains challenging to include essential information in conditioning DM for more relevant generation, i.e., the physical principles of dMRI and white matter tract structures. In this study, we propose a physics-guided diffusion model to generate high-quality dMRI. Our model introduces the physical principles of dMRI in the noise evolution in the diffusion process and introduce a query-based conditional mapping within the difussion model. In addition, to enhance the anatomical fine detials of the generation, we introduce the XTRACT atlas as prior of white matter tracts by adopting an adapter technique. Our experiment results show that our method outperforms other state-of-the-art methods and has the potential to advance dMRI enhancement.
- Abstract(参考訳): 拡散MRI(dMRI)は,取得コストの高い重要な神経画像撮影技術である。
深層学習のアプローチは、dMRIの強化や、アンダーサンプルdMRIによる拡散バイオマーカーの予測に用いられている。
より包括的な生のdMRIを生成するために,b-値とb-ベクトルを条件として含む生成的敵ネットワークに基づく手法が提案されているが,それらは不安定なトレーニングと望ましい多様性の欠如によって制限されている。
新興拡散モデル(DM)は、生成性能を改善することを約束する。
しかし、DMの条件付けに欠かせない情報、すなわちdMRIとホワイトマタートラクトの構造の物理原理を含めることは依然として困難である。
本研究では,高画質のdMRIを生成する物理誘導拡散モデルを提案する。
本モデルは拡散過程におけるノイズ進化におけるdMRIの物理原理を導入し,拡散モデル内にクエリに基づく条件付きマッピングを導入する。
また,XTRACTアトラスを,アダプター技術を用いて,白質トラスの前駆体として導入した。
以上の結果から,本手法は他の最先端手法よりも優れ,dMRI向上の可能性が示唆された。
関連論文リスト
- LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
The Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method was proposed。
スケジューラモジュールを用いて、再構成したMR画像の品質と忠実度を適切に制御し、バランスをとる。
MRIタスク(MR-VAE)に適応したVAEを探索し、将来のMR関連タスクのバックボーンとして機能する。
論文 参考訳(メタデータ) (2024-11-05T09:51:59Z) - When Diffusion MRI Meets Diffusion Model: A Novel Deep Generative Model for Diffusion MRI Generation [9.330836344638731]
深部拡散モデルを用いたdMRI生成のための新しい生成手法を提案する。
勾配情報と脳構造を保存する高次元(4D)と高解像度のデータを生成することができる。
提案手法は,現在の最先端手法と比較して,dMRI画像の生成性能が向上していることを示す。
論文 参考訳(メタデータ) (2024-08-23T08:03:15Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Fast Controllable Diffusion Models for Undersampled MRI Reconstruction [9.257507373275288]
本研究は,MRIのアンダーサンプル再構成のための拡散モデルの制御可能な生成を促進させる,Predictor-Projector-Noisor (PPN) と呼ばれる新しいアルゴリズムを提案する。
以上の結果から, PPNは, 他の制御可能なサンプリング法に比べて, 再構成時間を大幅に短縮した, アンサンプ付きk空間計測に適合した高忠実MR画像を生成することがわかった。
論文 参考訳(メタデータ) (2023-11-20T05:58:05Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - DreaMR: Diffusion-driven Counterfactual Explanation for Functional MRI [0.0]
拡散駆動型逆ファクト法であるDreaMRを導入し,高い特異性,妥当性,忠実度でfMRIの解釈を可能にする。
DreaMRは、入力fMRIサンプルの拡散に基づく再サンプリングを行い、下流分類器の決定を変更し、説明のために元のサンプルと反現実的なサンプルの最小差を計算する。
ニューロイメージングデータセットに関する総合的な実験は、fMRIの解釈のための最先端のカウンターファクト法よりも、サンプル生成におけるDreaMRの特異性、忠実性、効率性が優れていることを示した。
論文 参考訳(メタデータ) (2023-07-18T18:46:07Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - CoLa-Diff: Conditional Latent Diffusion Model for Multi-Modal MRI
Synthesis [11.803971719704721]
ほとんどの拡散ベースのMRI合成モデルは単一のモードを使用している。
拡散型多モードMRI合成モデル、すなわち条件付き潜在拡散モデル(CoLa-Diff)を提案する。
実験により、CoLa-Diffは他の最先端MRI合成法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-03-24T15:46:10Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。