論文の概要: Fast Controllable Diffusion Models for Undersampled MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2311.12078v3
- Date: Tue, 11 Jun 2024 10:15:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 00:48:47.084520
- Title: Fast Controllable Diffusion Models for Undersampled MRI Reconstruction
- Title(参考訳): アンダーサンプルMRI再構成のための高速可制御拡散モデル
- Authors: Wei Jiang, Zhuang Xiong, Feng Liu, Nan Ye, Hongfu Sun,
- Abstract要約: 本研究は,MRIのアンダーサンプル再構成のための拡散モデルの制御可能な生成を促進させる,Predictor-Projector-Noisor (PPN) と呼ばれる新しいアルゴリズムを提案する。
以上の結果から, PPNは, 他の制御可能なサンプリング法に比べて, 再構成時間を大幅に短縮した, アンサンプ付きk空間計測に適合した高忠実MR画像を生成することがわかった。
- 参考スコア(独自算出の注目度): 9.257507373275288
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Supervised deep learning methods have shown promise in undersampled Magnetic Resonance Imaging (MRI) reconstruction, but their requirement for paired data limits their generalizability to the diverse MRI acquisition parameters. Recently, unsupervised controllable generative diffusion models have been applied to undersampled MRI reconstruction, without paired data or model retraining for different MRI acquisitions. However, diffusion models are generally slow in sampling and state-of-the-art acceleration techniques can lead to sub-optimal results when directly applied to the controllable generation process. This study introduces a new algorithm called Predictor-Projector-Noisor (PPN), which enhances and accelerates controllable generation of diffusion models for undersampled MRI reconstruction. Our results demonstrate that PPN produces high-fidelity MR images that conform to undersampled k-space measurements with significantly shorter reconstruction time than other controllable sampling methods. In addition, the unsupervised PPN accelerated diffusion models are adaptable to different MRI acquisition parameters, making them more practical for clinical use than supervised learning techniques.
- Abstract(参考訳): 改良された深層学習法はMRI(MRI)のアンダーサンプル再構成において有望であるが、そのペア化データに対する要求は、MRIの様々な取得パラメータに対する一般化性を制限している。
近年、異なるMRI取得のためのペアデータやモデル再構成なしに、アンサンプされたMRI再構成に制御不能な生成拡散モデルが適用されている。
しかし、拡散モデルはサンプリングにおいて一般的に遅いため、制御可能な生成プロセスに直接適用した場合、最先端の加速技術は準最適結果をもたらす可能性がある。
本研究では,MRI再構成のための拡散モデルの制御可能生成を促進・促進するPredictor-Projector-Noisor (PPN)と呼ばれる新しいアルゴリズムを提案する。
以上の結果から, PPNは, 他の制御可能なサンプリング法に比べて, 再構成時間を大幅に短縮した, アンサンプ付きk空間計測に適合した高忠実MR画像を生成することがわかった。
さらに、教師なしPPN加速拡散モデルが異なるMRI取得パラメータに適応可能であり、教師付き学習技術よりも臨床的に有用である。
関連論文リスト
- Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
論文 参考訳(メタデータ) (2024-07-03T01:37:56Z) - K-space Cold Diffusion: Learning to Reconstruct Accelerated MRI without
Noise [2.982793366290863]
ガウス雑音を伴わずにk空間における画像劣化と復元を行うk空間冷拡散モデルを提案する。
以上の結果から, この新たな劣化処理により, 高速MRIのための高品質な再構成画像が生成できることが示唆された。
論文 参考訳(メタデータ) (2023-11-16T19:34:18Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
拡散モデルは、高い試料品質のため、MRIの再生を加速するために人気を博している。
推論時に柔軟にフォワードモデルを組み込んだまま、効果的にリッチなデータプリエントとして機能することができる。
拡散モデル(SMRD)を用いたSUREに基づくMRI再構成を導入し,テスト時の堅牢性を向上する。
論文 参考訳(メタデータ) (2023-10-03T05:05:35Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - A scan-specific unsupervised method for parallel MRI reconstruction via
implicit neural representation [9.388253054229155]
暗黙的神経表現(INR)は、物体の内部連続性を学ぶための新しいディープラーニングパラダイムとして登場した。
提案手法は,アーティファクトやノイズのエイリアスを抑えることにより,既存の手法よりも優れる。
良質な結果と走査特異性により,提案手法は並列MRIのデータ取得をさらに加速させる可能性を秘めている。
論文 参考訳(メタデータ) (2022-10-19T10:16:03Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - K-space and Image Domain Collaborative Energy based Model for Parallel
MRI Reconstruction [21.317550364310343]
磁気共鳴(MR)画像取得時間の減少は、MRI検査をよりアクセスしやすくする可能性がある。
そこで我々は,K空間と画像領域の協調生成モデルを提案し,アンダーサンプル計測からMRデータを包括的に推定する。
実験による最先端技術との比較により, 提案手法は再構成における誤差が少なく, 異なる加速度因子下では安定であることがわかった。
論文 参考訳(メタデータ) (2022-03-21T07:38:59Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI [52.656075914042155]
本稿では,MRIによる他のモダリティ獲得のためのアンダーサンプリングパターンを最適化するための反復的フレームワークを提案する。
公開データセット上で学習したアンダーサンプリングパターンの優れた性能を実証した。
論文 参考訳(メタデータ) (2021-11-11T04:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。