Dynamical topology of chiral and nonreciprocal state transfers in a non-Hermitian quantum system
- URL: http://arxiv.org/abs/2406.03026v1
- Date: Wed, 5 Jun 2024 07:51:58 GMT
- Title: Dynamical topology of chiral and nonreciprocal state transfers in a non-Hermitian quantum system
- Authors: Pengfei Lu, Yang Liu, Qifeng Lao, Teng Liu, Xinxin Rao, Ji Bian, Hao Wu, Feng Zhu, Le Luo,
- Abstract summary: We study topological chiral and nonreciprocal dynamics by encircling the exceptional points (EPs) of non-Hermitian Hamiltonians in a trapped ion system.
These dynamics are topologically robust against external perturbations even in the presence dissipation-induced nonadiabatic processes.
Our results mark a significant step towards exploring topological properties of open quantum systems.
- Score: 11.467872077398688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fundamental concept underlying topological phenomena posits the geometric phase associated with eigenstates. In contrast to this prevailing notion, theoretical studies on time-varying Hamiltonians allow for a new type of topological phenomenon, known as topological dynamics, where the evolution process allows a hidden topological invariant associated with continuous flows. To validate this conjecture, we study topological chiral and nonreciprocal dynamics by encircling the exceptional points (EPs) of non-Hermitian Hamiltonians in a trapped ion system. These dynamics are topologically robust against external perturbations even in the presence dissipation-induced nonadiabatic processes. Our findings indicate that they are protected by dynamical vorticity -- an emerging topological invariant associated with the energy dispersion of non-Hermitian band structures in a parallel transported eigenbasis. The symmetry breaking and other key features of topological dynamics are directly observed through quantum state tomography. Our results mark a significant step towards exploring topological properties of open quantum systems.
Related papers
- Non-Hermitian dynamical topological winding in photonic mesh lattices [0.0]
Topological winding in non-Hermitian systems are generally associated to the Bloch band properties of lattice Hamiltonians.
In certain non-Hermitian models topological winding naturally arise from the dynamical evolution of the system and related to a new form of geometric phase.
arXiv Detail & Related papers (2024-07-01T17:59:15Z) - Emerging topological characterization in non-equilibrium states of quenched Kitaev chains [0.0]
Topological characteristics of quantum systems are determined by the closing of a gap.
The dynamical quantum phase transition (DQPT) during quantum real-time evolution has emerged as a nonequilibrium analog to the quantum phase transition (QPT)
arXiv Detail & Related papers (2023-11-14T10:26:15Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Link between \emph{Zitterbewegung} and topological phase transition [6.390959580779527]
We investigate the relationship between emphZitterbewegung and the topology of systems that reflect the properties of the local and whole energy bands.
By studying emphZitterbewegung dynamics before and after topological phase transition, we find that the direction of quasiparticles' oscillation can well reflect topological properties.
arXiv Detail & Related papers (2022-01-29T17:59:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Detecting non-Bloch topological invariants in quantum dynamics [7.544412038291252]
Non-Bloch topological invariants preserve the bulk-boundary correspondence in non-Hermitian systems.
We report the dynamic detection of non-Bloch topological invariants in single-photon quantum walks.
Our work sheds new light on the experimental investigation of non-Hermitian topology.
arXiv Detail & Related papers (2021-07-30T16:40:30Z) - Topological holographic quench dynamics in a synthetic dimension [4.703471655236035]
We propose to efficiently characterize photonic topological phases via holographic quench dynamics.
Key prediction is that the complete topological information of the Hamiltonian is extracted from quench dynamics solely in the time domain.
This work also shows that the photonic synthetic frequency dimension provides an efficient and powerful way to explore the topological non-equilibrium dynamics.
arXiv Detail & Related papers (2021-01-21T13:46:33Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.