論文の概要: Are Your Models Still Fair? Fairness Attacks on Graph Neural Networks via Node Injections
- arxiv url: http://arxiv.org/abs/2406.03052v2
- Date: Wed, 30 Oct 2024 11:56:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 20:43:50.047984
- Title: Are Your Models Still Fair? Fairness Attacks on Graph Neural Networks via Node Injections
- Title(参考訳): モデルはまだフェアか?ノード注入によるグラフニューラルネットワークのフェアネスアタック
- Authors: Zihan Luo, Hong Huang, Yongkang Zhou, Jiping Zhang, Nuo Chen, Hai Jin,
- Abstract要約: グラフニューラルネットワーク(GNN)では、悪意のある敵対的攻撃に直面した際の公正な脆弱性が明らかにされている。
我々は、より現実的な環境でGNNフェアネスの脆弱性を探求するノードインジェクションベースのフェアネスアタック(NIFA)を紹介する。
NIFAは、ノードの1%だけを注入することで、フェアネスを意識したGNNを含むメインストリームのGNNの公平性を著しく損なう可能性がある。
- 参考スコア(独自算出の注目度): 28.86365261170078
- License:
- Abstract: Despite the remarkable capabilities demonstrated by Graph Neural Networks (GNNs) in graph-related tasks, recent research has revealed the fairness vulnerabilities in GNNs when facing malicious adversarial attacks. However, all existing fairness attacks require manipulating the connectivity between existing nodes, which may be prohibited in reality. To this end, we introduce a Node Injection-based Fairness Attack (NIFA), exploring the vulnerabilities of GNN fairness in such a more realistic setting. In detail, NIFA first designs two insightful principles for node injection operations, namely the uncertainty-maximization principle and homophily-increase principle, and then optimizes injected nodes' feature matrix to further ensure the effectiveness of fairness attacks. Comprehensive experiments on three real-world datasets consistently demonstrate that NIFA can significantly undermine the fairness of mainstream GNNs, even including fairness-aware GNNs, by injecting merely 1% of nodes. We sincerely hope that our work can stimulate increasing attention from researchers on the vulnerability of GNN fairness, and encourage the development of corresponding defense mechanisms. Our code and data are released at: https://github.com/CGCL-codes/NIFA.
- Abstract(参考訳): グラフ関連タスクにおけるグラフニューラルネットワーク(GNN)の顕著な能力にもかかわらず、最近の研究では、悪意のある敵攻撃に直面した場合のGNNの公平性脆弱性が明らかにされている。
しかし、既存のフェアネス攻撃は、実際には禁止される可能性がある既存のノード間の接続を操作する必要がある。
この目的のために、我々は、より現実的な環境でGNNフェアネスの脆弱性を探求するノードインジェクションベースのフェアネスアタック(NIFA)を導入する。
NIFAはまず,不確実性最大化原理とホモフィリ増分原理という,ノード注入操作に関する洞察に富んだ2つの原理を設計し,さらに公平性攻撃の有効性を保証するために,挿入ノードの特徴行列を最適化する。
3つの実世界のデータセットに関する包括的な実験は、NIFAがノードの1%だけを注入することで、フェアネスを意識したGNNを含むメインストリームのGNNの公平性を著しく損なうことを一貫して示している。
我々は,GNNフェアネスの脆弱性について研究者の注意を喚起し,対応する防御機構の開発を促進することを心から願っている。
私たちのコードとデータは、https://github.com/CGCL-codes/NIFA.comでリリースされます。
関連論文リスト
- Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
グラフニューラルネットワーク(GNN)は,グラフベースのタスクにおいて,目立ったグラフ学習モデルとして登場した。
悪意のある攻撃者は、入力グラフデータに摂動を追加することで、予測の公平度を容易に損なうことができる。
本稿では, ELEGANT というフレームワークを提案し, GNN の公正度レベルにおける認証防御の新たな課題について検討する。
論文 参考訳(メタデータ) (2023-11-05T20:29:40Z) - Adversarial Attacks on Fairness of Graph Neural Networks [63.155299388146176]
公正を意識したグラフニューラルネットワーク(GNN)は、どの人口集団でも予測のバイアスを減らすことができるため、注目を集めている。
これらの手法はGNNのアルゴリズム的公正性を大幅に改善するが、慎重に設計された敵攻撃によって容易に公正性を損なうことができる。
論文 参考訳(メタデータ) (2023-10-20T21:19:54Z) - Graph Agent Network: Empowering Nodes with Inference Capabilities for Adversarial Resilience [50.460555688927826]
グラフニューラルネットワーク(GNN)の脆弱性に対処するグラフエージェントネットワーク(GAgN)を提案する。
GAgNはグラフ構造化エージェントネットワークであり、各ノードは1-hop-viewエージェントとして設計されている。
エージェントの限られたビューは、悪意のあるメッセージがGAgNでグローバルに伝播するのを防ぎ、グローバル最適化ベースのセカンダリアタックに抵抗する。
論文 参考訳(メタデータ) (2023-06-12T07:27:31Z) - GANI: Global Attacks on Graph Neural Networks via Imperceptible Node
Injections [20.18085461668842]
グラフニューラルネットワーク(GNN)は、様々なグラフ関連タスクで成功している。
近年の研究では、多くのGNNが敵の攻撃に弱いことが示されている。
本稿では,偽ノードを注入することで,現実的な攻撃操作に焦点を当てる。
論文 参考訳(メタデータ) (2022-10-23T02:12:26Z) - Adversarial Inter-Group Link Injection Degrades the Fairness of Graph
Neural Networks [15.116231694800787]
本稿では,公正性を低下させることを目的としたグラフニューラルネットワーク(GNN)に対する敵攻撃の存在と有効性を示す。
これらの攻撃は、GNNベースのノード分類において特定のノードのサブグループを不利にする可能性がある。
敵リンク注入がGNN予測の公平性を損なうのかを定性的および実験的に分析する。
論文 参考訳(メタデータ) (2022-09-13T12:46:57Z) - Adversarial Camouflage for Node Injection Attack on Graphs [64.5888846198005]
グラフニューラルネットワーク(GNN)に対するノードインジェクション攻撃は、GNNのパフォーマンスを高い攻撃成功率で低下させる能力のため、近年注目を集めている。
本研究は,これらの攻撃が現実的なシナリオでしばしば失敗することを示す。
これを解決するため,我々はカモフラージュノードインジェクション攻撃(camouflage node Injection attack)に取り組んだ。
論文 参考訳(メタデータ) (2022-08-03T02:48:23Z) - Black-box Node Injection Attack for Graph Neural Networks [29.88729779937473]
被害者のGNNモデルを回避するためにノードを注入する可能性について検討する。
具体的には,グラフ強化学習フレームワークGA2Cを提案する。
本稿では,既存の最先端手法よりもGA2Cの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-02-18T19:17:43Z) - Robustness of Graph Neural Networks at Scale [63.45769413975601]
我々は,グラフニューラルネットワーク(GNN)を大規模に攻撃し,防御する方法を研究する。
効率のよい表現を維持するために,2つのスパシティ対応一階最適化攻撃を提案する。
GNNに対する世界的な攻撃には、一般的なサロゲート損失が適していないことを示す。
論文 参考訳(メタデータ) (2021-10-26T21:31:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。