How Truncating Weights Improves Reasoning in Language Models
- URL: http://arxiv.org/abs/2406.03068v1
- Date: Wed, 5 Jun 2024 08:51:08 GMT
- Title: How Truncating Weights Improves Reasoning in Language Models
- Authors: Lei Chen, Joan Bruna, Alberto Bietti,
- Abstract summary: We study how certain global associations tend to be stored in specific weight components or Transformer blocks.
We analyze how this arises during training, both empirically and theoretically.
- Score: 49.80959223722325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In addition to the ability to generate fluent text in various languages, large language models have been successful at tasks that involve basic forms of logical "reasoning" over their context. Recent work found that selectively removing certain components from weight matrices in pre-trained models can improve such reasoning capabilities. We investigate this phenomenon further by carefully studying how certain global associations tend to be stored in specific weight components or Transformer blocks, in particular feed-forward layers. Such associations may hurt predictions in reasoning tasks, and removing the corresponding components may then improve performance. We analyze how this arises during training, both empirically and theoretically, on a two-layer Transformer trained on a basic reasoning task with noise, a toy associative memory model, and on the Pythia family of pre-trained models tested on simple reasoning tasks.
Related papers
- Mitigating Reversal Curse in Large Language Models via Semantic-aware Permutation Training [57.771940716189114]
We show that large language models (LLMs) suffer from the "reversal curse"
The root cause of the reversal curse lies in the different word order between the training and inference stage.
We propose Semantic-aware Permutation Training (SPT) to address this issue.
arXiv Detail & Related papers (2024-03-01T18:55:20Z) - Token-wise Decomposition of Autoregressive Language Model Hidden States
for Analyzing Model Predictions [9.909170013118775]
This work presents a linear decomposition of final hidden states from autoregressive language models based on each initial input token.
Using the change in next-word probability as a measure of importance, this work first examines which context words make the biggest contribution to language model predictions.
arXiv Detail & Related papers (2023-05-17T23:55:32Z) - APOLLO: A Simple Approach for Adaptive Pretraining of Language Models
for Logical Reasoning [73.3035118224719]
We propose APOLLO, an adaptively pretrained language model that has improved logical reasoning abilities.
APOLLO performs comparably on ReClor and outperforms baselines on LogiQA.
arXiv Detail & Related papers (2022-12-19T07:40:02Z) - ALERT: Adapting Language Models to Reasoning Tasks [43.8679673685468]
ALERT is a benchmark and suite of analyses for assessing language models' reasoning ability.
ALERT provides a test bed to asses any language model on fine-grained reasoning skills.
We find that language models learn more reasoning skills during finetuning stage compared to pretraining state.
arXiv Detail & Related papers (2022-12-16T05:15:41Z) - Disentangling Reasoning Capabilities from Language Models with
Compositional Reasoning Transformers [72.04044221898059]
ReasonFormer is a unified reasoning framework for mirroring the modular and compositional reasoning process of humans.
The representation module (automatic thinking) and reasoning modules (controlled thinking) are disentangled to capture different levels of cognition.
The unified reasoning framework solves multiple tasks with a single model,and is trained and inferred in an end-to-end manner.
arXiv Detail & Related papers (2022-10-20T13:39:55Z) - Turning Tables: Generating Examples from Semi-structured Tables for
Endowing Language Models with Reasoning Skills [32.55545292360155]
We propose to leverage semi-structured tables, and automatically generate at scale question-paragraph pairs.
We add a pre-training step over this synthetic data, which includes examples that require 16 different reasoning skills.
We show that our model, PReasM, substantially outperforms T5, a popular pre-trained encoder-decoder model.
arXiv Detail & Related papers (2021-07-15T11:37:14Z) - On the Interplay Between Fine-tuning and Composition in Transformers [7.513100214864645]
We investigate the impact of fine-tuning on the capacity of contextualized embeddings to capture phrase meaning information.
Specifically, we fine-tune models on an adversarial paraphrase classification task with high lexical overlap, and on a sentiment classification task.
We find that fine-tuning largely fails to benefit compositionality in these representations, though training on sentiment yields a small, localized benefit for certain models.
arXiv Detail & Related papers (2021-05-31T01:49:56Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z) - Leap-Of-Thought: Teaching Pre-Trained Models to Systematically Reason
Over Implicit Knowledge [96.92252296244233]
Large pre-trained language models (LMs) acquire some reasoning capacity, but this ability is difficult to control.
We show that LMs can be trained to reliably perform systematic reasoning combining both implicit, pre-trained knowledge and explicit natural language statements.
Our work paves a path towards open-domain systems that constantly improve by interacting with users who can instantly correct a model by adding simple natural language statements.
arXiv Detail & Related papers (2020-06-11T17:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.