Improving Plan Execution Flexibility using Block-Substitution
- URL: http://arxiv.org/abs/2406.03091v1
- Date: Wed, 5 Jun 2024 09:30:48 GMT
- Title: Improving Plan Execution Flexibility using Block-Substitution
- Authors: Sabah Binte Noor, Fazlul Hasan Siddiqui,
- Abstract summary: Partial-order plans in AI planning facilitate execution flexibility due to their less-constrained nature.
Plan deordering removes unnecessary action orderings within a plan, while plan reordering modifies them arbitrarily to minimize action orderings.
This study, in contrast with traditional plan deordering and reordering strategies, improves a plan's flexibility by substituting its subplans with actions outside the plan for a planning problem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Partial-order plans in AI planning facilitate execution flexibility due to their less-constrained nature. Maximizing plan flexibility has been studied through the notions of plan deordering, and plan reordering. Plan deordering removes unnecessary action orderings within a plan, while plan reordering modifies them arbitrarily to minimize action orderings. This study, in contrast with traditional plan deordering and reordering strategies, improves a plan's flexibility by substituting its subplans with actions outside the plan for a planning problem. We exploit block deordering, which eliminates orderings in a POP by encapsulating coherent actions in blocks, to construct action blocks as candidate subplans for substitutions. In addition, this paper introduces a pruning technique for eliminating redundant actions within a BDPO plan. We also evaluate our approach when combined with MaxSAT-based reorderings. Our experimental result demonstrates a significant improvement in plan execution flexibility on the benchmark problems from International Planning Competitions (IPC), maintaining good coverage and execution time.
Related papers
- Improving Execution Concurrency in Partial-Order Plans via Block-Substitution [0.0]
A Partial-Order Plan (POP) allows two actions with no ordering between them, thus providing the flexibility of executing actions in different sequences.
This work formalizes the conditions for non-concurrency constraints to transform a POP into a parallel plan.
Our algorithm employs block deordering that eliminates orderings in a POP by encapsulating coherent actions in blocks, and then exploits blocks as candidate subplans for substitutions.
arXiv Detail & Related papers (2024-06-25T23:36:13Z) - Some Orders Are Important: Partially Preserving Orders in Top-Quality Planning [15.20541905857507]
We propose specifying a subset of actions the orders between which are important, interpolating between the top-quality and unordered top-quality planning problems.
We explore the ways of adapting partial order reduction search pruning techniques to address this new computational problem.
arXiv Detail & Related papers (2024-04-01T22:10:12Z) - On Computing Plans with Uniform Action Costs [10.621487250485897]
This paper adapts three uniformity metrics to automated planning, and introduces planning-based compilations that allow to lexicographically optimize sum of action costs and action costs uniformity.
Experimental results both in well-known and novel planning benchmarks show that the reformulated tasks can be effectively solved in practice to generate uniform plans.
arXiv Detail & Related papers (2024-02-15T11:00:28Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Tree-Planner: Efficient Close-loop Task Planning with Large Language Models [63.06270302774049]
Tree-Planner reframes task planning with Large Language Models into three distinct phases.
Tree-Planner achieves state-of-the-art performance while maintaining high efficiency.
arXiv Detail & Related papers (2023-10-12T17:59:50Z) - Lifted Sequential Planning with Lazy Constraint Generation Solvers [28.405198103927955]
This paper studies the possibilities made open by the use of Lazy Clause Generation (LCG) based approaches to Constraint Programming (CP)
We propose a novel CP model based on seminal ideas on so-called lifted causal encodings for planning as satisfiability.
We report that for planning problem instances requiring fewer plan steps our methods compare very well with the state-of-the-art in optimal sequential planning.
arXiv Detail & Related papers (2023-07-17T04:54:58Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
Large language models (LLMs) have recently demonstrated the potential in acting as autonomous agents for sequential decision-making tasks.
We propose a closed-loop approach, AdaPlanner, which allows the LLM agent to refine its self-generated plan adaptively in response to environmental feedback.
To mitigate hallucination, we develop a code-style LLM prompt structure that facilitates plan generation across a variety of tasks, environments, and agent capabilities.
arXiv Detail & Related papers (2023-05-26T05:52:27Z) - Differentiable Spatial Planning using Transformers [87.90709874369192]
We propose Spatial Planning Transformers (SPT), which given an obstacle map learns to generate actions by planning over long-range spatial dependencies.
In the setting where the ground truth map is not known to the agent, we leverage pre-trained SPTs in an end-to-end framework.
SPTs outperform prior state-of-the-art differentiable planners across all the setups for both manipulation and navigation tasks.
arXiv Detail & Related papers (2021-12-02T06:48:16Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
We consider alternatives to an implicit sequential planning assumption.
We propose Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS) for approximating the optimal plan.
We show that this algorithmic flexibility over planning order leads to improved results in navigation tasks in grid-worlds.
arXiv Detail & Related papers (2020-04-23T18:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.