Some Orders Are Important: Partially Preserving Orders in Top-Quality Planning
- URL: http://arxiv.org/abs/2404.01503v1
- Date: Mon, 1 Apr 2024 22:10:12 GMT
- Title: Some Orders Are Important: Partially Preserving Orders in Top-Quality Planning
- Authors: Michael Katz, Junkyu Lee, Jungkoo Kang, Shirin Sohrabi,
- Abstract summary: We propose specifying a subset of actions the orders between which are important, interpolating between the top-quality and unordered top-quality planning problems.
We explore the ways of adapting partial order reduction search pruning techniques to address this new computational problem.
- Score: 15.20541905857507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to generate multiple plans is central to using planning in real-life applications. Top-quality planners generate sets of such top-cost plans, allowing flexibility in determining equivalent ones. In terms of the order between actions in a plan, the literature only considers two extremes -- either all orders are important, making each plan unique, or all orders are unimportant, treating two plans differing only in the order of actions as equivalent. To allow flexibility in selecting important orders, we propose specifying a subset of actions the orders between which are important, interpolating between the top-quality and unordered top-quality planning problems. We explore the ways of adapting partial order reduction search pruning techniques to address this new computational problem and present experimental evaluations demonstrating the benefits of exploiting such techniques in this setting.
Related papers
- Improving Execution Concurrency in Partial-Order Plans via Block-Substitution [0.0]
A Partial-Order Plan (POP) allows two actions with no ordering between them, thus providing the flexibility of executing actions in different sequences.
This work formalizes the conditions for non-concurrency constraints to transform a POP into a parallel plan.
Our algorithm employs block deordering that eliminates orderings in a POP by encapsulating coherent actions in blocks, and then exploits blocks as candidate subplans for substitutions.
arXiv Detail & Related papers (2024-06-25T23:36:13Z) - Improving Plan Execution Flexibility using Block-Substitution [0.0]
Partial-order plans in AI planning facilitate execution flexibility due to their less-constrained nature.
Plan deordering removes unnecessary action orderings within a plan, while plan reordering modifies them arbitrarily to minimize action orderings.
This study, in contrast with traditional plan deordering and reordering strategies, improves a plan's flexibility by substituting its subplans with actions outside the plan for a planning problem.
arXiv Detail & Related papers (2024-06-05T09:30:48Z) - Experiment Planning with Function Approximation [49.50254688629728]
We study the problem of experiment planning with function approximation in contextual bandit problems.
We propose two experiment planning strategies compatible with function approximation.
We show that a uniform sampler achieves competitive optimality rates in the setting where the number of actions is small.
arXiv Detail & Related papers (2024-01-10T14:40:23Z) - Unified Task and Motion Planning using Object-centric Abstractions of
Motion Constraints [56.283944756315066]
We propose an alternative TAMP approach that unifies task and motion planning into a single search.
Our approach is based on an object-centric abstraction of motion constraints that permits leveraging the computational efficiency of off-the-shelf AI search to yield physically feasible plans.
arXiv Detail & Related papers (2023-12-29T14:00:20Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
Task planning for embodied AI has been one of the most challenging problems.
We propose a task-agnostic method named 'planning as in-painting'
The proposed framework achieves promising performances in various embodied AI tasks.
arXiv Detail & Related papers (2023-12-02T10:07:17Z) - Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
We introduce Success Induced Task Prioritization (SITP), a framework for automatic curriculum learning.
The algorithm selects the order of tasks that provide the fastest learning for agents.
We demonstrate that SITP matches or surpasses the results of other curriculum design methods.
arXiv Detail & Related papers (2022-12-30T12:32:43Z) - Multiple Plans are Better than One: Diverse Stochastic Planning [26.887796946596243]
In planning problems, it is often challenging to fully model the desired specifications.
In particular, in human-robot interaction, such difficulty may arise due to human's preferences that are either private or complex to model.
We formulate a problem, called diverse planning, that aims to generate a set of representative behaviors that are near-optimal.
arXiv Detail & Related papers (2020-12-31T07:29:11Z) - Robust Hierarchical Planning with Policy Delegation [6.1678491628787455]
We propose a novel framework and algorithm for hierarchical planning based on the principle of delegation.
We show this planning approach is experimentally very competitive to classic planning and reinforcement learning techniques on a variety of domains.
arXiv Detail & Related papers (2020-10-25T04:36:20Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
We consider alternatives to an implicit sequential planning assumption.
We propose Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS) for approximating the optimal plan.
We show that this algorithmic flexibility over planning order leads to improved results in navigation tasks in grid-worlds.
arXiv Detail & Related papers (2020-04-23T18:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.