論文の概要: MESS: Modern Electronic Structure Simulations
- arxiv url: http://arxiv.org/abs/2406.03121v1
- Date: Wed, 5 Jun 2024 10:15:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 18:59:55.872750
- Title: MESS: Modern Electronic Structure Simulations
- Title(参考訳): MESS: 最新の電子構造シミュレーション
- Authors: Hatem Helal, Andrew Fitzgibbon,
- Abstract要約: 電子構造シミュレーション(Electronic Structure Simulation, ESS)は、原子論的なスケールに関する定量的科学的知見を提供するために何十年も使われてきた。
最近の機械学習(ML)の導入は、MLモデルをFORTRANやCといった言語でコーディングする必要があることを意味している。
我々は、JAXで実装された最新の電子構造シミュレーションパッケージであるMESSを紹介し、ESSコードをMLの世界に移植する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic structure simulation (ESS) has been used for decades to provide quantitative scientific insights on an atomistic scale, enabling advances in chemistry, biology, and materials science, among other disciplines. Following standard practice in scientific computing, the software packages driving these studies have been implemented in compiled languages such as FORTRAN and C. However, the recent introduction of machine learning (ML) into these domains has meant that ML models must be coded in these languages, or that complex software bridges have to be built between ML models in Python and these large compiled software systems. This is in contrast with recent progress in modern ML frameworks which aim to optimise both ease of use and high performance by harnessing hardware acceleration of tensor programs defined in Python. We introduce MESS: a modern electronic structure simulation package implemented in JAX; porting the ESS code to the ML world. We outline the costs and benefits of following the software development practices used in ML for this important scientific workload. MESS shows significant speedups n widely available hardware accelerators and simultaneously opens a clear pathway towards combining ESS with ML. MESS is available at https://github.com/graphcore-research/mess.
- Abstract(参考訳): 電子構造シミュレーション(Electronic Structure Simulation, ESS)は、化学、生物学、材料科学などの分野の進歩を可能にするため、原子論的なスケールに関する定量的科学的知見を提供するために何十年も使われてきた。
しかし、最近の機械学習(ML)がこれらのドメインに導入されたことで、MLモデルはこれらの言語でコーディングされなければならない、複雑なソフトウェアブリッジはPythonのMLモデルとこれらの大規模なコンパイルされたソフトウェアシステムの間で構築されなければならない、ということを意味している。
これは、Pythonで定義されたテンソルプログラムのハードウェアアクセラレーションを活用することで、使いやすさとハイパフォーマンスの両方を最適化することを目的とした、最近のMLフレームワークの最近の進歩とは対照的である。
我々は、JAXで実装された最新の電子構造シミュレーションパッケージであるMESSを紹介し、ESSコードをMLの世界に移植する。
この重要な科学的ワークロードに対してMLで使用されるソフトウェア開発プラクティスに従うことのコストとメリットを概説する。
MESSは、広く利用可能なハードウェアアクセラレーターに大幅なスピードアップを示し、同時にESSとMLを組み合わせるための明確な経路を開く。
MESSはhttps://github.com/graphcore-research/mess.comで入手できる。
関連論文リスト
- A Large-Scale Study of Model Integration in ML-Enabled Software Systems [4.776073133338119]
機械学習(ML)とそのシステムへの組み込みは、ソフトウェア集約システムのエンジニアリングを大きく変えた。
伝統的に、ソフトウェアエンジニアリングは、ソースコードやそれらを作成するプロセスなど、手作業で作成したアーティファクトに焦点を当てている。
我々は、GitHub上で2,928以上のオープンソースシステムをカバーする、実際のML対応ソフトウェアシステムに関する最初の大規模な研究を提示する。
論文 参考訳(メタデータ) (2024-08-12T15:28:40Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - MLatom 3: Platform for machine learning-enhanced computational chemistry
simulations and workflows [12.337972297411003]
機械学習(ML)は、計算化学における一般的なツールになりつつある。
MLatom 3は、MLのパワーを活用して典型的な計算化学シミュレーションを強化するプログラムパッケージである。
ユーザーは、事前訓練されたMLモデルと量子力学的近似を含む幅広いメソッドのライブラリから選択できる。
論文 参考訳(メタデータ) (2023-10-31T03:41:39Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
近年、流体力学計算を容易にする機械学習(ML)の多くの成功例が報告されている。
シミュレーションが大きくなるにつれて、従来のオフライン学習のための新しいトレーニングデータセットの生成は、I/Oとストレージのボトルネックを生み出します。
この作業は、この結合を単純化し、異種クラスタでのその場トレーニングと推論を可能にするソリューションを提供する。
論文 参考訳(メタデータ) (2023-06-22T14:07:54Z) - ML-driven Hardware Cost Model for MLIR [1.2987894327817158]
高レベルMLIRのための機械学習に基づくコストモデルを開発した。
MLIRをラ・NLPモデルのテキスト入力として考えることにより、現代のNLP研究からよく知られた技術を適用することができる。
これらのモデルにより,種々のハードウェア特性に対する誤差境界が低く,合理的に優れた推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-02-14T11:32:47Z) - SeLoC-ML: Semantic Low-Code Engineering for Machine Learning
Applications in Industrial IoT [9.477629856092218]
本稿では,Semantic Low-Code Engineering for ML Applications (SeLoC-ML) というフレームワークを提案する。
SeLoC-MLは、非専門家が大規模なMLモデルやデバイスをモデル化し、発見し、再利用することを可能にする。
開発者は、レシピと呼ばれるセマンティックなアプリケーションテンプレートから、エンドユーザアプリケーションのプロトタイプを高速に作成できる。
論文 参考訳(メタデータ) (2022-07-18T13:06:21Z) - FastML Science Benchmarks: Accelerating Real-Time Scientific Edge
Machine Learning [6.281437279822099]
本稿では,MLおよび組込みシステム技術をカバーする,科学機械学習ベンチマークの最初のセットを紹介する。
これらのベンチマークは、ナノ秒およびマイクロ秒レベルのレイテンシ要求を満たすことができる科学応用のための将来のエッジMLハードウェアの設計をガイドすることができる。
論文 参考訳(メタデータ) (2022-07-16T14:30:15Z) - Extending Python for Quantum-Classical Computing via Quantum
Just-in-Time Compilation [78.8942067357231]
Pythonは、その柔軟性、ユーザビリティ、可読性、開発者の生産性を重視することで有名な人気のあるプログラミング言語です。
量子ジャスト・イン・タイム・コンパイルのための堅牢なC++インフラストラクチャを通じて、異種量子古典計算を可能にするPythonの言語拡張を提案する。
論文 参考訳(メタデータ) (2021-05-10T21:11:21Z) - Achieving 100X faster simulations of complex biological phenomena by
coupling ML to HPC ensembles [47.44377051031385]
ML駆動HPCシミュレーションシナリオのプロトタイプのためのツールであるDeepDriveMDを紹介します。
ML駆動のアンサンブルベースのアプリケーションの科学的性能の向上を定量化するために使用します。
論文 参考訳(メタデータ) (2021-04-10T15:52:39Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。