On the Power of Randomization in Fair Classification and Representation
- URL: http://arxiv.org/abs/2406.03142v2
- Date: Mon, 07 Oct 2024 06:32:03 GMT
- Title: On the Power of Randomization in Fair Classification and Representation
- Authors: Sushant Agarwal, Amit Deshpande,
- Abstract summary: We show the power of randomization to minimize the loss of accuracy that results when we impose fairness constraints.
We construct DP-fair, EO-fair, and PE-fair representations that have provably optimal accuracy and suffer no accuracy loss compared to the optimal DP-fair, EO-fair, and PE-fair classifiers respectively on the original data distribution.
- Score: 4.423655941492362
- License:
- Abstract: Fair classification and fair representation learning are two important problems in supervised and unsupervised fair machine learning, respectively. Fair classification asks for a classifier that maximizes accuracy on a given data distribution subject to fairness constraints. Fair representation maps a given data distribution over the original feature space to a distribution over a new representation space such that all classifiers over the representation satisfy fairness. In this paper, we examine the power of randomization in both these problems to minimize the loss of accuracy that results when we impose fairness constraints. Previous work on fair classification has characterized the optimal fair classifiers on a given data distribution that maximize accuracy subject to fairness constraints, e.g., Demographic Parity (DP), Equal Opportunity (EO), and Predictive Equality (PE). We refine these characterizations to demonstrate when the optimal randomized fair classifiers can surpass their deterministic counterparts in accuracy. We also show how the optimal randomized fair classifier that we characterize can be obtained as a solution to a convex optimization problem. Recent work has provided techniques to construct fair representations for a given data distribution such that any classifier over this representation satisfies DP. However, the classifiers on these fair representations either come with no or weak accuracy guarantees when compared to the optimal fair classifier on the original data distribution. Extending our ideas for randomized fair classification, we improve on these works, and construct DP-fair, EO-fair, and PE-fair representations that have provably optimal accuracy and suffer no accuracy loss compared to the optimal DP-fair, EO-fair, and PE-fair classifiers respectively on the original data distribution.
Related papers
- Distributionally Generative Augmentation for Fair Facial Attribute Classification [69.97710556164698]
Facial Attribute Classification (FAC) holds substantial promise in widespread applications.
FAC models trained by traditional methodologies can be unfair by exhibiting accuracy inconsistencies across varied data subpopulations.
This work proposes a novel, generation-based two-stage framework to train a fair FAC model on biased data without additional annotation.
arXiv Detail & Related papers (2024-03-11T10:50:53Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
We experimentally demonstrate that classes are not equal and the fairness issue is prevalent for image classification models across various datasets.
Our findings reveal that models tend to exhibit greater prediction biases for classes that are more challenging to recognize.
Data augmentation and representation learning algorithms improve overall performance by promoting fairness to some degree in image classification.
arXiv Detail & Related papers (2024-02-28T07:54:50Z) - How Far Can Fairness Constraints Help Recover From Biased Data? [9.430687114814997]
A general belief in fair classification is that fairness constraints incur a trade-off with accuracy, which biased data may worsen.
Contrary to this belief, Blum & Stangl show that fair classification with equal opportunity constraints even on extremely biased data can recover optimally accurate and fair classifiers on the original data distribution.
arXiv Detail & Related papers (2023-12-16T09:49:31Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
We propose a fine-grained data augmentation strategy for imposing fairness constraints.
We show that group fairness can be achieved by regularizing the models on transition paths of sensitive features between groups.
Our proposed method does not assume any data generative model and ensures good generalization for both accuracy and fairness.
arXiv Detail & Related papers (2023-04-01T11:23:00Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - Fair and Optimal Classification via Post-Processing [10.163721748735801]
This paper provides a complete characterization of the inherent tradeoff of demographic parity on classification problems.
We show that the minimum error rate achievable by randomized and attribute-aware fair classifiers is given by the optimal value of a Wasserstein-barycenter problem.
arXiv Detail & Related papers (2022-11-03T00:04:04Z) - Domain Adaptation meets Individual Fairness. And they get along [48.95808607591299]
We show that algorithmic fairness interventions can help machine learning models overcome distribution shifts.
In particular, we show that enforcing suitable notions of individual fairness (IF) can improve the out-of-distribution accuracy of ML models.
arXiv Detail & Related papers (2022-05-01T16:19:55Z) - Impossibility results for fair representations [12.483260526189447]
We argue that no representation can guarantee the fairness of classifiers for different tasks trained using it.
More refined notions of fairness, like Odds Equality, cannot be guaranteed by a representation that does not take into account the task specific labeling rule.
arXiv Detail & Related papers (2021-07-07T21:12:55Z) - A Distributionally Robust Approach to Fair Classification [17.759493152879013]
We propose a robust logistic regression model with an unfairness penalty that prevents discrimination with respect to sensitive attributes such as gender or ethnicity.
This model is equivalent to a tractable convex optimization problem if a Wasserstein ball centered at the empirical distribution on the training data is used to model distributional uncertainty.
We demonstrate that the resulting classifier improves fairness at a marginal loss of predictive accuracy on both synthetic and real datasets.
arXiv Detail & Related papers (2020-07-18T22:34:48Z) - Ensuring Fairness Beyond the Training Data [22.284777913437182]
We develop classifiers that are fair with respect to the training distribution and for a class of perturbations.
Based on online learning algorithm, we develop an iterative algorithm that converges to a fair and robust solution.
Our experiments show that there is an inherent trade-off between fairness and accuracy of such classifiers.
arXiv Detail & Related papers (2020-07-12T16:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.