Dynamic 3D Gaussian Fields for Urban Areas
- URL: http://arxiv.org/abs/2406.03175v1
- Date: Wed, 5 Jun 2024 12:07:39 GMT
- Title: Dynamic 3D Gaussian Fields for Urban Areas
- Authors: Tobias Fischer, Jonas Kulhanek, Samuel Rota Bulò, Lorenzo Porzi, Marc Pollefeys, Peter Kontschieder,
- Abstract summary: We present an efficient neural 3D scene representation for novel-view synthesis (NVS) in large-scale, dynamic urban areas.
We propose 4DGF, a neural scene representation that scales to large-scale dynamic urban areas.
- Score: 60.64840836584623
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present an efficient neural 3D scene representation for novel-view synthesis (NVS) in large-scale, dynamic urban areas. Existing works are not well suited for applications like mixed-reality or closed-loop simulation due to their limited visual quality and non-interactive rendering speeds. Recently, rasterization-based approaches have achieved high-quality NVS at impressive speeds. However, these methods are limited to small-scale, homogeneous data, i.e. they cannot handle severe appearance and geometry variations due to weather, season, and lighting and do not scale to larger, dynamic areas with thousands of images. We propose 4DGF, a neural scene representation that scales to large-scale dynamic urban areas, handles heterogeneous input data, and substantially improves rendering speeds. We use 3D Gaussians as an efficient geometry scaffold while relying on neural fields as a compact and flexible appearance model. We integrate scene dynamics via a scene graph at global scale while modeling articulated motions on a local level via deformations. This decomposed approach enables flexible scene composition suitable for real-world applications. In experiments, we surpass the state-of-the-art by over 3 dB in PSNR and more than 200 times in rendering speed.
Related papers
- DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments [0.0]
We propose DENSER, a framework that significantly enhances the representation of dynamic objects.
The proposed approach significantly outperforms state-of-the-art methods by a wide margin.
arXiv Detail & Related papers (2024-09-16T07:11:58Z) - Multi-Level Neural Scene Graphs for Dynamic Urban Environments [64.26401304233843]
We present a novel, decomposable radiance field approach for dynamic urban environments.
We propose a multi-level neural scene graph representation that scales to thousands of images from dozens of sequences with hundreds of fast-moving objects.
arXiv Detail & Related papers (2024-03-29T21:52:01Z) - HO-Gaussian: Hybrid Optimization of 3D Gaussian Splatting for Urban Scenes [24.227745405760697]
We propose a hybrid optimization method named HO-Gaussian, which combines a grid-based volume with the 3DGS pipeline.
Results on widely used autonomous driving datasets demonstrate that HO-Gaussian achieves photo-realistic rendering in real-time on multi-camera urban datasets.
arXiv Detail & Related papers (2024-03-29T07:58:21Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis [28.455719771979876]
We propose Spacetime Gaussian Feature Splatting as a novel dynamic scene representation.
Our method achieves state-of-the-art rendering quality and speed, while retaining compact storage.
arXiv Detail & Related papers (2023-12-28T04:14:55Z) - HybridNeRF: Efficient Neural Rendering via Adaptive Volumetric Surfaces [71.1071688018433]
Neural radiance fields provide state-of-the-art view synthesis quality but tend to be slow to render.
We propose a method, HybridNeRF, that leverages the strengths of both representations by rendering most objects as surfaces.
We improve error rates by 15-30% while achieving real-time framerates (at least 36 FPS) for virtual-reality resolutions (2Kx2K)
arXiv Detail & Related papers (2023-12-05T22:04:49Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene
Reconstruction [29.83056271799794]
Implicit neural representation has paved the way for new approaches to dynamic scene reconstruction and rendering.
We propose a deformable 3D Gaussians Splatting method that reconstructs scenes using 3D Gaussians and learns them in canonical space.
Through a differential Gaussianizer, the deformable 3D Gaussians not only achieve higher rendering quality but also real-time rendering speed.
arXiv Detail & Related papers (2023-09-22T16:04:02Z) - Neural Deformable Voxel Grid for Fast Optimization of Dynamic View
Synthesis [63.25919018001152]
We propose a fast deformable radiance field method to handle dynamic scenes.
Our method achieves comparable performance to D-NeRF using only 20 minutes for training.
arXiv Detail & Related papers (2022-06-15T17:49:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.