Multi-Level Neural Scene Graphs for Dynamic Urban Environments
- URL: http://arxiv.org/abs/2404.00168v1
- Date: Fri, 29 Mar 2024 21:52:01 GMT
- Title: Multi-Level Neural Scene Graphs for Dynamic Urban Environments
- Authors: Tobias Fischer, Lorenzo Porzi, Samuel Rota Bulò, Marc Pollefeys, Peter Kontschieder,
- Abstract summary: We present a novel, decomposable radiance field approach for dynamic urban environments.
We propose a multi-level neural scene graph representation that scales to thousands of images from dozens of sequences with hundreds of fast-moving objects.
- Score: 64.26401304233843
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We estimate the radiance field of large-scale dynamic areas from multiple vehicle captures under varying environmental conditions. Previous works in this domain are either restricted to static environments, do not scale to more than a single short video, or struggle to separately represent dynamic object instances. To this end, we present a novel, decomposable radiance field approach for dynamic urban environments. We propose a multi-level neural scene graph representation that scales to thousands of images from dozens of sequences with hundreds of fast-moving objects. To enable efficient training and rendering of our representation, we develop a fast composite ray sampling and rendering scheme. To test our approach in urban driving scenarios, we introduce a new, novel view synthesis benchmark. We show that our approach outperforms prior art by a significant margin on both established and our proposed benchmark while being faster in training and rendering.
Related papers
- DENSER: 3D Gaussians Splatting for Scene Reconstruction of Dynamic Urban Environments [0.0]
We propose DENSER, a framework that significantly enhances the representation of dynamic objects.
The proposed approach significantly outperforms state-of-the-art methods by a wide margin.
arXiv Detail & Related papers (2024-09-16T07:11:58Z) - D-NPC: Dynamic Neural Point Clouds for Non-Rigid View Synthesis from Monocular Video [53.83936023443193]
This paper contributes to the field by introducing a new synthesis method for dynamic novel view from monocular video, such as smartphone captures.
Our approach represents the as a $textitdynamic neural point cloud$, an implicit time-conditioned point cloud that encodes local geometry and appearance in separate hash-encoded neural feature grids.
arXiv Detail & Related papers (2024-06-14T14:35:44Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - Dynamic 3D Gaussian Fields for Urban Areas [60.64840836584623]
We present an efficient neural 3D scene representation for novel-view synthesis (NVS) in large-scale, dynamic urban areas.
We propose 4DGF, a neural scene representation that scales to large-scale dynamic urban areas.
arXiv Detail & Related papers (2024-06-05T12:07:39Z) - ProSGNeRF: Progressive Dynamic Neural Scene Graph with Frequency
Modulated Auto-Encoder in Urban Scenes [16.037300340326368]
Implicit neural representation has demonstrated promising results in view synthesis for large and complex scenes.
Existing approaches either fail to capture the fast-moving objects or need to build the scene graph without camera ego-motions.
We aim to jointly solve the view synthesis problem of large-scale urban scenes and fast-moving vehicles.
arXiv Detail & Related papers (2023-12-14T16:11:42Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - wildNeRF: Complete view synthesis of in-the-wild dynamic scenes captured
using sparse monocular data [16.7345472998388]
We present a novel neural radiance model that is trainable in a self-supervised manner for novel-view synthesis of dynamic unstructured scenes.
Our end-to-end trainable algorithm learns highly complex, real-world static scenes within seconds and dynamic scenes with both rigid and non-rigid motion within minutes.
arXiv Detail & Related papers (2022-09-20T14:37:56Z) - Non-Rigid Neural Radiance Fields: Reconstruction and Novel View
Synthesis of a Dynamic Scene From Monocular Video [76.19076002661157]
Non-Rigid Neural Radiance Fields (NR-NeRF) is a reconstruction and novel view synthesis approach for general non-rigid dynamic scenes.
We show that even a single consumer-grade camera is sufficient to synthesize sophisticated renderings of a dynamic scene from novel virtual camera views.
arXiv Detail & Related papers (2020-12-22T18:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.