論文の概要: Situation Monitor: Diversity-Driven Zero-Shot Out-of-Distribution Detection using Budding Ensemble Architecture for Object Detection
- arxiv url: http://arxiv.org/abs/2406.03188v1
- Date: Wed, 5 Jun 2024 12:20:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 18:30:28.163760
- Title: Situation Monitor: Diversity-Driven Zero-Shot Out-of-Distribution Detection using Budding Ensemble Architecture for Object Detection
- Title(参考訳): 状況モニタ:オブジェクト検出のためのバディングアンサンブルアーキテクチャを用いた多様性駆動型ゼロショットアウトオブディストリビューション検出
- Authors: Qutub Syed, Michael Paulitsch, Korbinian Hagn, Neslihan Kose Cihangir, Kay-Ulrich Scholl, Fabian Oboril, Gereon Hinz, Alois Knoll,
- Abstract要約: コンディションモニターは、トランスフォーマーに基づくオブジェクト検出モデルのための新しいゼロショットアウトオブディストリビューション(OOD)検出手法である。
自律運転のような安全クリティカルな機械学習アプリケーションの信頼性を高める。
- 参考スコア(独自算出の注目度): 5.706574483483306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Situation Monitor, a novel zero-shot Out-of-Distribution (OOD) detection approach for transformer-based object detection models to enhance reliability in safety-critical machine learning applications such as autonomous driving. The Situation Monitor utilizes the Diversity-based Budding Ensemble Architecture (DBEA) and increases the OOD performance by integrating a diversity loss into the training process on top of the budding ensemble architecture, detecting Far-OOD samples and minimizing false positives on Near-OOD samples. Moreover, utilizing the resulting DBEA increases the model's OOD performance and improves the calibration of confidence scores, particularly concerning the intersection over union of the detected objects. The DBEA model achieves these advancements with a 14% reduction in trainable parameters compared to the vanilla model. This signifies a substantial improvement in efficiency without compromising the model's ability to detect OOD instances and calibrate the confidence scores accurately.
- Abstract(参考訳): 本研究では、自律運転のような安全クリティカルな機械学習アプリケーションの信頼性を高めるために、トランスフォーマーに基づくオブジェクト検出モデルのための新しいゼロショットアウトオブディストリビューション(OOD)検出手法であるAreasure Monitorを紹介する。
インシデントモニターは多様性に基づくバディングアンサンブルアーキテクチャ(DBEA)を利用し、芽生えたアンサンブルアーキテクチャ上でのトレーニングプロセスに多様性損失を統合し、Far-OODサンプルを検出し、Near-OODサンプル上での偽陽性を最小限にすることで、OODパフォーマンスを向上させる。
さらに、得られたDBEAを利用することで、モデルのOOD性能が向上し、特に検出対象の結合に関する信頼度スコアの校正が向上する。
DBEAモデルは、バニラモデルと比較してトレーニング可能なパラメータを14%削減して、これらの進歩を達成する。
これは、OODインスタンスを検出し、信頼性スコアを正確に調整するモデルの能力を損なうことなく、効率を大幅に向上することを意味する。
関連論文リスト
- Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
アウト・オブ・ディストリビューション(OOD)オブジェクト検出は、オープンセットのOODデータがないため、難しい課題である。
テキストから画像への生成モデルの最近の進歩に触発されて,大規模オープンセットデータを用いて訓練された生成モデルがOODサンプルを合成する可能性について検討した。
SyncOODは,大規模基盤モデルの能力を活用するシンプルなデータキュレーション手法である。
論文 参考訳(メタデータ) (2024-09-08T17:28:22Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
本研究は、視覚言語モデルにおいて、OOD精度と信頼性校正の両方を同時に改善する頑健な微調整法を提案する。
OOD分類とOOD校正誤差は2つのIDデータからなる共有上限を持つことを示す。
この知見に基づいて,最小の特異値を持つ制約付きマルチモーダルコントラスト損失を用いて微調整を行う新しいフレームワークを設計する。
論文 参考訳(メタデータ) (2023-11-03T05:41:25Z) - Detecting Out-of-Distribution Through the Lens of Neural Collapse [7.04686607977352]
安全なデプロイメントには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
既存の検出器は、一般化の相違とコストの懸念を示す。
我々はニューラル崩壊の傾向にインスパイアされた、高度に多用途で効率的なOOD検出器を提案する。
論文 参考訳(メタデータ) (2023-11-02T05:18:28Z) - AUTO: Adaptive Outlier Optimization for Online Test-Time OOD Detection [81.49353397201887]
オープンソースアプリケーションに機械学習モデルをデプロイするには、アウト・オブ・ディストリビューション(OOD)検出が不可欠だ。
我々は、未ラベルのオンラインデータをテスト時に直接利用してOOD検出性能を向上させる、テスト時OOD検出と呼ばれる新しいパラダイムを導入する。
本稿では,入出力フィルタ,IDメモリバンク,意味的に一貫性のある目的からなる適応外乱最適化(AUTO)を提案する。
論文 参考訳(メタデータ) (2023-03-22T02:28:54Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
外周露光(OE)は、オフ・オブ・ディストリビューション(OOD)検出において強力である。
我々は,未確認のOOD状況に対してモデルの性能を良くする,新しいOEベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-09T04:36:38Z) - Boosting Out-of-distribution Detection with Typical Features [22.987563801433595]
オフ・オブ・ディストリビューション(OOD)検出は、現実世界のシナリオにおけるディープニューラルネットワークの信頼性と安全性を保証するための重要なタスクである。
本稿では,その特徴を定式化してOODスコアを定式化して,信頼性の高い不確実性推定を実現することを提案する。
一般的なベンチマーク(CIFAR)と大きなラベル空間を持つ高解像度ベンチマーク(ImageNet)の両方において,本手法の優位性を評価する。
論文 参考訳(メタデータ) (2022-10-09T08:44:22Z) - Certified Adversarial Defenses Meet Out-of-Distribution Corruptions:
Benchmarking Robustness and Simple Baselines [65.0803400763215]
この研究は、最先端のロバストモデルがアウト・オブ・ディストリビューションデータに遭遇した場合、敵のロバスト性がどのように変化を保証しているかを批判的に検証する。
本稿では,トレーニングデータのスペクトルカバレッジを改善するために,新たなデータ拡張方式であるFourierMixを提案する。
また,FourierMixの拡張により,様々なOODベンチマークにおいて,より優れたロバスト性保証を実現することが可能となる。
論文 参考訳(メタデータ) (2021-12-01T17:11:22Z) - On the Impact of Spurious Correlation for Out-of-distribution Detection [14.186776881154127]
我々は、不変性と環境特性の両方を考慮して、データシフトをモデル化し、新しい形式化を提案する。
その結果, トレーニングセットにおいて, 突発的特徴とラベルの相関が大きくなると, 検出性能が著しく悪化することが示唆された。
論文 参考訳(メタデータ) (2021-09-12T23:58:17Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。