論文の概要: On the Impact of Spurious Correlation for Out-of-distribution Detection
- arxiv url: http://arxiv.org/abs/2109.05642v1
- Date: Sun, 12 Sep 2021 23:58:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-09-14 16:03:16.226852
- Title: On the Impact of Spurious Correlation for Out-of-distribution Detection
- Title(参考訳): 分散検出におけるスプリアス相関の影響について
- Authors: Yifei Ming, Hang Yin, Yixuan Li
- Abstract要約: 我々は、不変性と環境特性の両方を考慮して、データシフトをモデル化し、新しい形式化を提案する。
その結果, トレーニングセットにおいて, 突発的特徴とラベルの相関が大きくなると, 検出性能が著しく悪化することが示唆された。
- 参考スコア(独自算出の注目度): 14.186776881154127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern neural networks can assign high confidence to inputs drawn from
outside the training distribution, posing threats to models in real-world
deployments. While much research attention has been placed on designing new
out-of-distribution (OOD) detection methods, the precise definition of OOD is
often left in vagueness and falls short of the desired notion of OOD in
reality. In this paper, we present a new formalization and model the data
shifts by taking into account both the invariant and environmental (spurious)
features. Under such formalization, we systematically investigate how spurious
correlation in the training set impacts OOD detection. Our results suggest that
the detection performance is severely worsened when the correlation between
spurious features and labels is increased in the training set. We further show
insights on detection methods that are more effective in reducing the impact of
spurious correlation and provide theoretical analysis on why reliance on
environmental features leads to high OOD detection error. Our work aims to
facilitate a better understanding of OOD samples and their formalization, as
well as the exploration of methods that enhance OOD detection.
- Abstract(参考訳): 現代のニューラルネットワークは、トレーニングディストリビューションの外から引き出されたインプットに高い信頼性を割り当て、実際のデプロイメントにおけるモデルに脅威を与えることができる。
新たなout-of-distribution (ood) 検出法の設計には多くの研究が注目されているが、oodの正確な定義はしばしば曖昧さに残されており、現実にはoodの望ましい概念には及ばない。
本稿では,不変性と環境(清潔な)特性を考慮した新たな形式化とデータシフトをモデル化する。
このような形式化の下で,トレーニングセットにおけるスプリアス相関がOOD検出に与える影響を系統的に検討した。
その結果, トレーニングセットにおいて, 突発的特徴とラベルの相関が大きくなると, 検出性能が著しく悪化することが示唆された。
さらに, 環境特性への依存がOOD検出誤差の増大につながる理由を理論的に分析し, 相関効果の低減に有効である検出方法について考察する。
本研究の目的は,OODサンプルとその形式化の理解を深めることと,OOD検出を強化する手法の探索である。
関連論文リスト
- Double Descent Meets Out-of-Distribution Detection: Theoretical Insights and Empirical Analysis on the role of model complexity [2.206582444513284]
トレーニングとOODサンプルの両方において,分類器の信頼性を評価するためのOODリスク指標を提案する。
パラメータ数がサンプル数に等しい場合,OODリスクは無限のピークを示す。
論文 参考訳(メタデータ) (2024-11-04T15:39:12Z) - NECO: NEural Collapse Based Out-of-distribution detection [2.4958897155282282]
OOD検出のための新しいポストホック法NECOを紹介する。
実験の結果,NECOは小型・大規模OOD検出タスクの両方を達成できた。
OOD検出における本手法の有効性を理論的に説明する。
論文 参考訳(メタデータ) (2023-10-10T17:53:36Z) - Meta OOD Learning for Continuously Adaptive OOD Detection [38.28089655572316]
現代のディープラーニングアプリケーションには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
本稿では,CAOOD(Continuous Adaptive Out-of-distribution)検出という,新しい,より現実的な設定を提案する。
トレーニングプロセス中に優れたOOD検出モデルが学習されるように、学習適応図を設計し、メタOOD学習(MOL)を開発する。
論文 参考訳(メタデータ) (2023-09-21T01:05:45Z) - Beyond AUROC & co. for evaluating out-of-distribution detection
performance [50.88341818412508]
安全(r)AIとの関連性を考えると,OOD検出法の比較の基礎が実用的ニーズと整合しているかどうかを検討することが重要である。
我々は,IDとOODの分離が不十分なことを明示する新しい指標であるAUTC(Area Under the Threshold Curve)を提案する。
論文 参考訳(メタデータ) (2023-06-26T12:51:32Z) - LINe: Out-of-Distribution Detection by Leveraging Important Neurons [15.797257361788812]
本稿では,分布内データとOODデータ間のモデル出力の差を解析するための新しい側面を紹介する。
本稿では,分布検出のポストホックアウトのための新しい手法であるLINe( Leveraging Important Neurons)を提案する。
論文 参考訳(メタデータ) (2023-03-24T13:49:05Z) - Out-of-distribution Detection with Implicit Outlier Transformation [72.73711947366377]
外周露光(OE)は、オフ・オブ・ディストリビューション(OOD)検出において強力である。
我々は,未確認のOOD状況に対してモデルの性能を良くする,新しいOEベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-03-09T04:36:38Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。