論文の概要: Text-like Encoding of Collaborative Information in Large Language Models for Recommendation
- arxiv url: http://arxiv.org/abs/2406.03210v1
- Date: Wed, 05 Jun 2024 12:45:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 22:38:23.111808
- Title: Text-like Encoding of Collaborative Information in Large Language Models for Recommendation
- Title(参考訳): 推薦用大規模言語モデルにおける協調情報のテキストライクな符号化
- Authors: Yang Zhang, Keqin Bao, Ming Yan, Wenjie Wang, Fuli Feng, Xiangnan He,
- Abstract要約: BinLLMはLarge Language Models for Recommendation (LLMRec)とシームレスに連携する新しい手法である。
BinLLMは、外部モデルからの協調的な埋め込みをバイナリシーケンスに変換する。
BinLLMは、ドット決定記法を用いてバイナリシーケンスを圧縮するオプションを提供し、過度に長い長さを避ける。
- 参考スコア(独自算出の注目度): 58.87865271693269
- License:
- Abstract: When adapting Large Language Models for Recommendation (LLMRec), it is crucial to integrate collaborative information. Existing methods achieve this by learning collaborative embeddings in LLMs' latent space from scratch or by mapping from external models. However, they fail to represent the information in a text-like format, which may not align optimally with LLMs. To bridge this gap, we introduce BinLLM, a novel LLMRec method that seamlessly integrates collaborative information through text-like encoding. BinLLM converts collaborative embeddings from external models into binary sequences -- a specific text format that LLMs can understand and operate on directly, facilitating the direct usage of collaborative information in text-like format by LLMs. Additionally, BinLLM provides options to compress the binary sequence using dot-decimal notation to avoid excessively long lengths. Extensive experiments validate that BinLLM introduces collaborative information in a manner better aligned with LLMs, resulting in enhanced performance. We release our code at https://github.com/zyang1580/BinLLM.
- Abstract(参考訳): LLMRec(Large Language Models for Recommendation)を適用する場合には,協調的な情報の統合が不可欠である。
既存の手法では、LLMの潜在空間における協調的な埋め込みをスクラッチから学習したり、外部モデルからマッピングすることでこれを達成している。
しかし、LLMと最適に一致しないようなテキストのような形式で情報を表現できない。
このギャップを埋めるために,テキストライクなエンコーディングを通じて協調情報をシームレスに統合する新しいLLMRec法であるBinLLMを導入する。
BinLLMは、協調的な埋め込みを外部モデルからバイナリシーケンスに変換する -- LLMが理解し、直接操作できる特定のテキストフォーマットで、LLMによるテキストライクなフォーマットでの協調情報の直接使用を容易にする。
さらに、BinLLMは、ドット決定記法を用いてバイナリシーケンスを圧縮するオプションを提供し、過度に長い長さを避ける。
大規模な実験により、BinLLMはLLMとより整合した方法で協調情報を導入し、性能が向上した。
コードをhttps://github.com/zyang1580/BinLLMでリリースします。
関連論文リスト
- CoRA: Collaborative Information Perception by Large Language Model's Weights for Recommendation [13.867950651601483]
LLM(Large Language Models)における協調情報の導入は,LLMを推奨に適応させる上で有望な手法である。
既存の手法では、テキストトークンと協調的な特徴を統一シーケンス入力に結合することでこれを実現する。
協調的なクエリジェネレータを備えた新しいパラダイムである textbfCollaborative textbfLoRA を提案する。
論文 参考訳(メタデータ) (2024-08-20T08:36:59Z) - Open-domain Implicit Format Control for Large Language Model Generation [52.83173553689678]
大規模言語モデル(LLM)における制御生成のための新しいフレームワークを提案する。
本研究では、LLMがオープンドメイン、ワンショット制約に従う能力と、サンプル回答の形式を再現する能力について検討する。
また、出力品質を劣化させることなく、LLMのオープンドメインフォーマット制御を強化する教師付き微調整のためのデータセット収集手法を開発した。
論文 参考訳(メタデータ) (2024-08-08T11:51:45Z) - Cool-Fusion: Fuse Large Language Models without Training [73.17551121242602]
emphCool-Fusionは、アンサンブルアプローチのようないかなるタイプのトレーニングも必要としないメソッドである。
emphCool-Fusionは3つの強力なLLMの精度を8%から17.8%向上させる。
論文 参考訳(メタデータ) (2024-07-29T09:02:19Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - LLM Attributor: Interactive Visual Attribution for LLM Generation [29.116016627864095]
Pythonライブラリは、大規模な言語モデルのデータ属性をトレーニングするためのインタラクティブな視覚化を提供する。
我々のライブラリは、LCMのテキスト生成をデータポイントのトレーニングに素早く対応させる新しい方法を提供する。
論文 参考訳(メタデータ) (2024-04-01T13:16:34Z) - Learning to Prompt with Text Only Supervision for Vision-Language Models [107.282881515667]
メソッドの1つのブランチは、視覚情報を使用してプロンプトを学習することでCLIPに適応する。
別のアプローチでは、大規模な言語モデルからクラス記述を生成することで、トレーニング不要の手法を利用する。
そこで本研究では,テキストデータのみを用いてプロンプトを学習することで,両ストリームの強みを組み合わせることを提案する。
論文 参考訳(メタデータ) (2024-01-04T18:59:49Z) - Making Large Language Models A Better Foundation For Dense Retrieval [19.38740248464456]
デンス検索では,クエリとドキュメント間の意味的関係を表現するために,識別テキストの埋め込みを学習する必要がある。
意味理解におけるLLMの強い能力を考えると、大きな言語モデル(LLM)の使用の恩恵を受けるかもしれない。
本稿では,LLaRA (LLM adapted for dense RetrievAl) を提案する。
論文 参考訳(メタデータ) (2023-12-24T15:10:35Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
我々は,協調情報をLLMにシームレスに組み込んでレコメンデーションを行う,革新的なLLMRec手法であるCoLLMを紹介する。
CoLLMは、外部の伝統的なモデルを通して協調情報をキャプチャし、LLMの入力トークン埋め込み空間にマッピングする。
大規模な実験により、CoLLMはLLMに協調情報を包括的に統合し、レコメンデーション性能が向上することが確認された。
論文 参考訳(メタデータ) (2023-10-30T12:25:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。