Interactive Image Selection and Training for Brain Tumor Segmentation Network
- URL: http://arxiv.org/abs/2406.03225v1
- Date: Wed, 5 Jun 2024 13:03:06 GMT
- Title: Interactive Image Selection and Training for Brain Tumor Segmentation Network
- Authors: Matheus A. Cerqueira, Flávia Sprenger, Bernardo C. A. Teixeira, Alexandre X. Falcão,
- Abstract summary: We employ an interactive method for image selection and training based on Feature Learning from Image Markers (FLIM)
The results demonstrated that with our methodology, we could choose a small set of images to train the encoder of a U-shaped network, obtaining performance equal to manual selection and even surpassing the same U-shaped network trained with backpropagation and all training images.
- Score: 42.62139206176152
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Medical image segmentation is a relevant problem, with deep learning being an exponent. However, the necessity of a high volume of fully annotated images for training massive models can be a problem, especially for applications whose images present a great diversity, such as brain tumors, which can occur in different sizes and shapes. In contrast, a recent methodology, Feature Learning from Image Markers (FLIM), has involved an expert in the learning loop, producing small networks that require few images to train the convolutional layers. In this work, We employ an interactive method for image selection and training based on FLIM, exploring the user's knowledge. The results demonstrated that with our methodology, we could choose a small set of images to train the encoder of a U-shaped network, obtaining performance equal to manual selection and even surpassing the same U-shaped network trained with backpropagation and all training images.
Related papers
- CricaVPR: Cross-image Correlation-aware Representation Learning for Visual Place Recognition [73.51329037954866]
We propose a robust global representation method with cross-image correlation awareness for visual place recognition.
Our method uses the attention mechanism to correlate multiple images within a batch.
Our method outperforms state-of-the-art methods by a large margin with significantly less training time.
arXiv Detail & Related papers (2024-02-29T15:05:11Z) - Connecting the Dots: Graph Neural Network Powered Ensemble and
Classification of Medical Images [0.0]
Deep learning for medical imaging is limited due to the requirement for large amounts of training data.
We employ the Image Foresting Transform to optimally segment images into superpixels.
These superpixels are subsequently transformed into graph-structured data, enabling the proficient extraction of features and modeling of relationships.
arXiv Detail & Related papers (2023-11-13T13:20:54Z) - Interpretable Small Training Set Image Segmentation Network Originated
from Multi-Grid Variational Model [5.283735137946097]
Deep learning (DL) methods have been proposed and widely used for image segmentation.
DL methods usually require a large amount of manually segmented data as training data and suffer from poor interpretability.
In this paper, we replace the hand-crafted regularity term in the MS model with a data adaptive generalized learnable regularity term.
arXiv Detail & Related papers (2023-06-25T02:34:34Z) - Genetic Programming-Based Evolutionary Deep Learning for Data-Efficient
Image Classification [3.9310727060473476]
This paper proposes a new genetic programming-based evolutionary deep learning approach to data-efficient image classification.
The new approach can automatically evolve variable-length models using many important operators from both image and classification domains.
A flexible multi-layer representation enables the new approach to automatically construct shallow or deep models/trees for different tasks.
arXiv Detail & Related papers (2022-09-27T08:10:16Z) - Meta Internal Learning [88.68276505511922]
Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image.
We propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively.
Our results show that the models obtained are as suitable as single-image GANs for many common image applications.
arXiv Detail & Related papers (2021-10-06T16:27:38Z) - Differentiable Patch Selection for Image Recognition [37.11810982945019]
We propose a differentiable Top-K operator to select the most relevant parts of the input to process high resolution images.
We show results for traffic sign recognition, inter-patch relationship reasoning, and fine-grained recognition without using object/part bounding box annotations.
arXiv Detail & Related papers (2021-04-07T11:15:51Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
Convolutional Neural Networks (CNNs) do not have a predictable recognition behavior with respect to the input resolution change.
We employ meta learners to generate convolutional weights of main networks for various input scales.
We further utilize knowledge distillation on the fly over model predictions based on different input resolutions.
arXiv Detail & Related papers (2020-07-13T04:27:25Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.