Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics
- URL: http://arxiv.org/abs/2406.03242v1
- Date: Wed, 5 Jun 2024 13:18:55 GMT
- Title: Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics
- Authors: Hanming Yang, Antonio Khalil Moretti, Sebastian Macaluso, Philippe Chlenski, Christian A. Naesseth, Itsik Pe'er,
- Abstract summary: We introduce a Combinatorial Sequential Monte Carlo approach for inferring jet latent structures.
As a second contribution, we leverage the resulting estimator to develop a variational inference algorithm for parameter learning.
We illustrate our method's effectiveness through experiments using data generated with a collider physics generative model.
- Score: 2.223804777595989
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing jets, which provide vital insights into the properties and histories of subatomic particles produced in high-energy collisions, is a main problem in data analyses in collider physics. This intricate task deals with estimating the latent structure of a jet (binary tree) and involves parameters such as particle energy, momentum, and types. While Bayesian methods offer a natural approach for handling uncertainty and leveraging prior knowledge, they face significant challenges due to the super-exponential growth of potential jet topologies as the number of observed particles increases. To address this, we introduce a Combinatorial Sequential Monte Carlo approach for inferring jet latent structures. As a second contribution, we leverage the resulting estimator to develop a variational inference algorithm for parameter learning. Building on this, we introduce a variational family using a pseudo-marginal framework for a fully Bayesian treatment of all variables, unifying the generative model with the inference process. We illustrate our method's effectiveness through experiments using data generated with a collider physics generative model, highlighting superior speed and accuracy across a range of tasks.
Related papers
- Parametric model reduction of mean-field and stochastic systems via higher-order action matching [1.1509084774278489]
We learn models of population dynamics of physical systems that feature gradient and mean-field effects.
We show that our approach accurately predicts population dynamics over a wide range of parameters and outperforms state-of-the-art diffusion-based and flow-based modeling.
arXiv Detail & Related papers (2024-10-15T19:05:28Z) - Deep Generative Models for Detector Signature Simulation: A Taxonomic Review [0.0]
Signatures from particle physics detectors are low-level objects (such as energy depositions or tracks) encoding the physics of collisions.
The complete simulation of them in a detector is a computational and storage-intensive task.
We conduct a comprehensive and exhaustive taxonomic review of the existing literature on the simulation of detector signatures.
arXiv Detail & Related papers (2023-12-15T08:27:39Z) - Neural network analysis of neutron and X-ray reflectivity data:
Incorporating prior knowledge for tackling the phase problem [141.5628276096321]
We present an approach that utilizes prior knowledge to regularize the training process over larger parameter spaces.
We demonstrate the effectiveness of our method in various scenarios, including multilayer structures with box model parameterization.
In contrast to previous methods, our approach scales favorably when increasing the complexity of the inverse problem.
arXiv Detail & Related papers (2023-06-28T11:15:53Z) - Additive Multi-Index Gaussian process modeling, with application to
multi-physics surrogate modeling of the quark-gluon plasma [1.7368964547487395]
The Quark-Gluon Plasma (QGP) is a unique phase of nuclear matter, theorized to have filled the Universe shortly after the Big Bang.
To reconcile experimental observables with theoretical parameters, one requires many simulation runs of a complex physics model over a high-dimensional parameter space.
We propose a new Additive Multi-Index Gaussian process (AdMIn-GP) model, which leverages a flexible additive structure on low-dimensional embeddings of the parameter space.
arXiv Detail & Related papers (2023-06-11T02:42:09Z) - End-To-End Latent Variational Diffusion Models for Inverse Problems in
High Energy Physics [61.44793171735013]
We introduce a novel unified architecture, termed latent variation models, which combines the latent learning of cutting-edge generative art approaches with an end-to-end variational framework.
Our unified approach achieves a distribution-free distance to the truth of over 20 times less than non-latent state-of-the-art baseline.
arXiv Detail & Related papers (2023-05-17T17:43:10Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Interpretable Joint Event-Particle Reconstruction for Neutrino Physics
at NOvA with Sparse CNNs and Transformers [124.29621071934693]
We present a novel neural network architecture that combines the spatial learning enabled by convolutions with the contextual learning enabled by attention.
TransformerCVN simultaneously classifies each event and reconstructs every individual particle's identity.
This architecture enables us to perform several interpretability studies which provide insights into the network's predictions.
arXiv Detail & Related papers (2023-03-10T20:36:23Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA)
In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field.
We show that the new method class has characteristics not found in previous alignment methods.
arXiv Detail & Related papers (2020-09-28T15:05:39Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
This study presents a microscopic traffic model that can capture randomness and measure errors in the real world.
Since one unique feature of the proposed framework is the capability of capturing both car-following and lane-changing behaviors with one single model, numerical tests are carried out with two separated datasets.
arXiv Detail & Related papers (2020-07-17T06:03:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.