Near-field Beam training for Extremely Large-scale MIMO Based on Deep Learning
- URL: http://arxiv.org/abs/2406.03249v2
- Date: Fri, 23 Aug 2024 11:02:49 GMT
- Title: Near-field Beam training for Extremely Large-scale MIMO Based on Deep Learning
- Authors: Jiali Nie, Yuanhao Cui, Zhaohui Yang, Weijie Yuan, Xiaojun Jing,
- Abstract summary: We propose a near-field beam training method based on deep learning.
We use a convolutional neural network (CNN) to efficiently learn channel characteristics from historical data.
The proposed scheme achieves a more stable beamforming gain and significantly improves performance compared to the traditional beam training method.
- Score: 20.67122533341949
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Extremely Large-scale Array (ELAA) is considered a frontier technology for future communication systems, pivotal in improving wireless systems' rate and spectral efficiency. As ELAA employs a multitude of antennas operating at higher frequencies, users are typically situated in the near-field region where the spherical wavefront propagates. The near-field beam training in ELAA requires both angle and distance information, which inevitably leads to a significant increase in the beam training overhead. To address this problem, we propose a near-field beam training method based on deep learning. We use a convolutional neural network (CNN) to efficiently learn channel characteristics from historical data by strategically selecting padding and kernel sizes. The negative value of the user average achievable rate is utilized as the loss function to optimize the beamformer. This method maximizes multi-user networks' achievable rate without predefined beam codebooks. Upon deployment, the model requires solely the pre-estimated channel state information (CSI) to derive the optimal beamforming vector. The simulation results demonstrate that the proposed scheme achieves a more stable beamforming gain and significantly improves performance compared to the traditional beam training method. Furthermore, owing to the inherent traits of deep learning methodologies, this approach substantially diminishes the near-field beam training overhead.
Related papers
- Hyperdimensional Computing Empowered Federated Foundation Model over Wireless Networks for Metaverse [56.384390765357004]
We propose an integrated federated split learning and hyperdimensional computing framework for emerging foundation models.
This novel approach reduces communication costs, computation load, and privacy risks, making it suitable for resource-constrained edge devices in the Metaverse.
arXiv Detail & Related papers (2024-08-26T17:03:14Z) - Beam Prediction based on Large Language Models [51.45077318268427]
Millimeter-wave (mmWave) communication is promising for next-generation wireless networks but suffers from significant path loss.
Traditional deep learning models, such as long short-term memory (LSTM), enhance beam tracking accuracy however are limited by poor robustness and generalization.
In this letter, we use large language models (LLMs) to improve the robustness of beam prediction.
arXiv Detail & Related papers (2024-08-16T12:40:01Z) - Deep Learning and Image Super-Resolution-Guided Beam and Power
Allocation for mmWave Networks [80.37827344656048]
We develop a deep learning (DL)-guided hybrid beam and power allocation approach for millimeter-wave (mmWave) networks.
We exploit the synergy of supervised learning and super-resolution technology to enable low-overhead beam- and power allocation.
arXiv Detail & Related papers (2023-05-08T05:40:54Z) - Federated Deep Reinforcement Learning for THz-Beam Search with Limited
CSI [17.602598143822913]
Terahertz (THz) communication with ultra-wide available spectrum is a promising technique that can achieve the stringent requirement of high data rate in the next-generation wireless networks.
Finding beam directions for a large-scale antenna array to effectively overcome severe propagation attenuation of THz signals is a pressing need.
This paper proposes a novel approach of federated deep reinforcement learning (FDRL) to swiftly perform THz-beam search for multiple base stations.
arXiv Detail & Related papers (2023-04-25T19:28:15Z) - Near-Field Channel Estimation for Extremely Large-Scale Array
Communications: A model-based deep learning approach [27.724896957034336]
We propose efficient model-based deep learning algorithms for estimating the near-field wireless channel of XL-MIMO communications.
Due to the near-field characteristic, the spatial gridding-based sparsifying dictionary may result in low channel estimation accuracy and a heavy computational burden.
We propose a new sparsifying dictionary learning-LISTA algorithm that formulates the sparsifying dictionary as a neural network layer and embeds it into LISTA neural network.
arXiv Detail & Related papers (2022-11-28T15:31:08Z) - Reinforcement Learning for Optimized Beam Training in Multi-Hop
Terahertz Communications [9.409142735305148]
A novel hierarchical beam training scheme with dynamic training levels is proposed to optimize the performance of multi-hop THz links.
The proposed scheme can yield up to 75% performance gain, in terms of spectral efficiency, compared to the conventional hierarchical beam training with a fixed number of training levels.
arXiv Detail & Related papers (2021-02-10T05:24:09Z) - Distributed Conditional Generative Adversarial Networks (GANs) for
Data-Driven Millimeter Wave Communications in UAV Networks [116.94802388688653]
A novel framework is proposed to perform data-driven air-to-ground (A2G) channel estimation for millimeter wave (mmWave) communications in an unmanned aerial vehicle (UAV) wireless network.
An effective channel estimation approach is developed, allowing each UAV to train a stand-alone channel model via a conditional generative adversarial network (CGAN) along each beamforming direction.
A cooperative framework, based on a distributed CGAN architecture, is developed, allowing each UAV to collaboratively learn the mmWave channel distribution.
arXiv Detail & Related papers (2021-02-02T20:56:46Z) - Deep Learning Assisted Calibrated Beam Training for Millimeter-Wave
Communication Systems [15.297530726877786]
Huge overhead of beam training imposes a significant challenge in millimeter-wave (mmWave) wireless communications.
We propose a wide beam based training approach to calibrate the narrow beam direction according to the channel power leakage.
To handle the complex nonlinear properties of the channel power leakage, deep learning is utilized to predict the optimal narrow beam directly.
arXiv Detail & Related papers (2021-01-08T04:02:34Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO [12.487990897680422]
We introduce a federated learning (FL) based framework for hybrid beamforming, where the model training is performed at the base station.
We design a convolutional neural network, in which the input is the channel data, yielding the analog beamformers at the output.
FL is demonstrated to be more tolerant to the imperfections and corruptions in the channel data as well as having less transmission overhead than CML.
arXiv Detail & Related papers (2020-05-20T11:21:07Z) - Large Batch Training Does Not Need Warmup [111.07680619360528]
Training deep neural networks using a large batch size has shown promising results and benefits many real-world applications.
In this paper, we propose a novel Complete Layer-wise Adaptive Rate Scaling (CLARS) algorithm for large-batch training.
Based on our analysis, we bridge the gap and illustrate the theoretical insights for three popular large-batch training techniques.
arXiv Detail & Related papers (2020-02-04T23:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.