論文の概要: Generating Explanations for Cellular Neural Networks
- arxiv url: http://arxiv.org/abs/2406.03253v3
- Date: Wed, 24 Jul 2024 18:22:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 18:57:36.013032
- Title: Generating Explanations for Cellular Neural Networks
- Title(参考訳): セルラーニューラルネットワークのための説明生成
- Authors: Akshit Sinha, Sreeram Vennam, Charu Sharma, Ponnurangam Kumaraguru,
- Abstract要約: 細胞複合体を用いて高次構造を捕捉するフレームワークHOGEを紹介する。
現実世界では、高次構造は分子やソーシャルネットワークのようにユビキタスである。
本研究は,グラフ説明の実用性を大幅に向上させるものである。
- 参考スコア(独自算出の注目度): 9.164945693135959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in graph learning contributed to explaining predictions generated by Graph Neural Networks. However, existing methodologies often fall short when applied to real-world datasets. We introduce HOGE, a framework to capture higher-order structures using cell complexes, which excel at modeling higher-order relationships. In the real world, higher-order structures are ubiquitous like in molecules or social networks, thus our work significantly enhances the practical applicability of graph explanations. HOGE produces clearer and more accurate explanations compared to prior methods. Our method can be integrated with all existing graph explainers, ensuring seamless integration into current frameworks. We evaluate on GraphXAI benchmark datasets, HOGE achieves improved or comparable performance with minimal computational overhead. Ablation studies show that the performance gain observed can be attributed to the higher-order structures that come from introducing cell complexes.
- Abstract(参考訳): グラフ学習の最近の進歩は、グラフニューラルネットワークによって生成された予測の説明に寄与した。
しかし、既存の方法論は、実世界のデータセットに適用すると、しばしば不足する。
我々は,高次関係のモデル化に長けているセルコンプレックスを用いて高次構造をキャプチャするフレームワークHOGEを紹介する。
実世界では、高次構造は分子やソーシャルネットワークのようにユビキタスであるため、我々の研究はグラフ説明の実用性を大幅に向上させる。
HOGEは従来の方法よりも明確で正確な説明をすることができる。
私たちのメソッドは既存のすべてのグラフ説明器と統合することができ、現在のフレームワークへのシームレスな統合を保証できます。
我々は、GraphXAIベンチマークデータセットを評価し、HOGEは最小の計算オーバーヘッドで改善または同等のパフォーマンスを達成する。
アブレーション研究では、観察された性能向上は、細胞複合体の導入による高次構造に起因することが示されている。
関連論文リスト
- Learning From Graph-Structured Data: Addressing Design Issues and Exploring Practical Applications in Graph Representation Learning [2.492884361833709]
グラフ表現学習とグラフニューラルネットワーク(GNN)の最近の進歩を概観する。
グラフ構造化データを扱うように設計されたGNNは、複雑な関係情報から洞察と予測を引き出すのに長けている。
我々の研究は、GNNの能力を掘り下げ、その基礎設計と現実の課題に対処するための応用について調べている。
論文 参考訳(メタデータ) (2024-11-09T19:10:33Z) - Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
半教師付きグラフ分類のためのハイパーグラフ拡張DuALフレームワークHEALを提案する。
ノード間の高次関係をよりよく探求するために,複雑なノード依存を適応的に学習するハイパーグラフ構造を設計する。
学習したハイパーグラフに基づいて,ハイパーエッジ間の相互作用を捉える線グラフを導入する。
論文 参考訳(メタデータ) (2024-05-08T02:44:13Z) - Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships [17.978546172777342]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学ぶのに優れています。
彼らの成功にもかかわらず、GNNはグラフ間の関係のコンテキストを無視して制限される。
本稿では,グラフ間の関係を利用してGNNを強化するプラグイン・アンド・プレイモジュールであるRelating-Upを紹介する。
論文 参考訳(メタデータ) (2024-05-07T02:16:54Z) - Enhancing Node Representations for Real-World Complex Networks with Topological Augmentation [35.42514739566419]
TopoAugは、生データから直接仮想ハイパーエッジを構築することで、元のグラフから複合体を構築する新しいグラフ拡張手法である。
ソーシャルメディア,生物学,eコマースなど,さまざまな領域にまたがる23の新たな実世界のグラフデータセットを提供する。
我々の実証研究は、TopoAugがGNNベースラインや他のグラフ拡張手法を一貫して、著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-02-20T14:18:43Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。