論文の概要: Higher Order Structures For Graph Explanations
- arxiv url: http://arxiv.org/abs/2406.03253v5
- Date: Sun, 10 Nov 2024 14:52:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:04:04.807130
- Title: Higher Order Structures For Graph Explanations
- Title(参考訳): グラフ説明のための高次構造
- Authors: Akshit Sinha, Sreeram Vennam, Charu Sharma, Ponnurangam Kumaraguru,
- Abstract要約: グラフ説明における高階表現のためのフレームワーク(FORGE)を提案する。
FORGEはグラフ説明器が高次のマルチノードインタラクションをキャプチャすることを可能にする。
平均説明精度をそれぞれ1.9倍と2.25倍に改善する。
- 参考スコア(独自算出の注目度): 9.164945693135959
- License:
- Abstract: Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations of graph-structured data, demonstrating remarkable performance across various tasks. Recognising their importance, there has been extensive research focused on explaining GNN predictions, aiming to enhance their interpretability and trustworthiness. However, GNNs and their explainers face a notable challenge: graphs are primarily designed to model pair-wise relationships between nodes, which can make it tough to capture higher-order, multi-node interactions. This characteristic can pose difficulties for existing explainers in fully representing multi-node relationships. To address this gap, we present Framework For Higher-Order Representations In Graph Explanations (FORGE), a framework that enables graph explainers to capture such interactions by incorporating higher-order structures, resulting in more accurate and faithful explanations. Extensive evaluation shows that on average real-world datasets from the GraphXAI benchmark and synthetic datasets across various graph explainers, FORGE improves average explanation accuracy by 1.9x and 2.25x, respectively. We perform ablation studies to confirm the importance of higher-order relations in improving explanations, while our scalability analysis demonstrates FORGE's efficacy on large graphs.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データの表現を学習するための強力なツールとして登場し、様々なタスクで顕著なパフォーマンスを示している。
その重要性を認識し、GNNの予測を説明することに焦点を当てた広範な研究が行われ、その解釈可能性と信頼性を高めることを目指している。
しかし、GNNとその説明者は、注目すべき課題に直面している。グラフは主にノード間のペアワイズ関係をモデル化するために設計されています。
この特徴は、マルチノード関係を完全に表現する上で、既存の説明者には困難をもたらす可能性がある。
このギャップに対処するために、グラフ説明者が高階構造を組み込むことでそのような相互作用を捉え、より正確で忠実な説明ができるフレームワークであるFORGE(Higher-Order Representations In Graph Explanations)を提案する。
広範囲な評価によると、GraphXAIベンチマークの平均実世界のデータセットと、さまざまなグラフ説明器にわたる合成データセットでは、ForGEは平均説明精度をそれぞれ1.9倍と2.25倍に改善している。
我々は,高次関係が説明を改善する上で重要であることを確認するためにアブレーション研究を行い,拡張性解析は大規模グラフ上でのForGEの有効性を実証する。
関連論文リスト
- Hypergraph-enhanced Dual Semi-supervised Graph Classification [14.339207883093204]
半教師付きグラフ分類のためのハイパーグラフ拡張DuALフレームワークHEALを提案する。
ノード間の高次関係をよりよく探求するために,複雑なノード依存を適応的に学習するハイパーグラフ構造を設計する。
学習したハイパーグラフに基づいて,ハイパーエッジ間の相互作用を捉える線グラフを導入する。
論文 参考訳(メタデータ) (2024-05-08T02:44:13Z) - Relating-Up: Advancing Graph Neural Networks through Inter-Graph Relationships [17.978546172777342]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学ぶのに優れています。
彼らの成功にもかかわらず、GNNはグラフ間の関係のコンテキストを無視して制限される。
本稿では,グラフ間の関係を利用してGNNを強化するプラグイン・アンド・プレイモジュールであるRelating-Upを紹介する。
論文 参考訳(メタデータ) (2024-05-07T02:16:54Z) - Enhancing Node Representations for Real-World Complex Networks with Topological Augmentation [35.42514739566419]
TopoAugは、生データから直接仮想ハイパーエッジを構築することで、元のグラフから複合体を構築する新しいグラフ拡張手法である。
ソーシャルメディア,生物学,eコマースなど,さまざまな領域にまたがる23の新たな実世界のグラフデータセットを提供する。
我々の実証研究は、TopoAugがGNNベースラインや他のグラフ拡張手法を一貫して、著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-02-20T14:18:43Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
グラフニューラルネットワーク(GNN)は、グラフィカルなタスクをエンドツーエンドで処理するニューラルネットワークの一種である。
GNNの複雑なダイナミクスは、グラフの特徴のどの部分が予測に強く寄与しているかを理解するのを困難にしている。
本研究では,グラフ内の重要な構造を検出するために,フレキシブルモデルに依存しない説明法を提案する。
論文 参考訳(メタデータ) (2023-02-04T09:46:47Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
グラフニューラルネットワーク(GNN)は、幾何データに基づく様々な学習タスクにおいて大きな性能を発揮する。
本稿では,既存のGNN解説者の多くが満足する統一フレームワークを提案する。
GNN用に特別に設計されたポストホックローカルモデル非依存説明法であるGraphSVXを紹介します。
論文 参考訳(メタデータ) (2021-04-18T10:40:37Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
グラフ畳み込みは近傍の集約を行い、最も重要なグラフ操作の1つである。
いくつかの最近の研究で、この性能劣化は過度に滑らかな問題に起因している。
本研究では,大きな受容領域からの情報を適応的に組み込むディープ適応グラフニューラルネットワーク(DAGNN)を提案する。
論文 参考訳(メタデータ) (2020-07-18T01:11:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。