論文の概要: Leveraging Off-the-Shelf Silicon Chips for Quantum Computing
- arxiv url: http://arxiv.org/abs/2406.03328v1
- Date: Wed, 5 Jun 2024 14:44:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 17:51:23.793193
- Title: Leveraging Off-the-Shelf Silicon Chips for Quantum Computing
- Title(参考訳): 量子コンピューティングのためのオフ・ザ・シェルフシリコンチップの活用
- Authors: John Michniewicz, M. S. Kim,
- Abstract要約: 有望な実装には、トランジスタ内の量子ドットを利用する半導体量子ビットが含まれる。
いくつかのイニシアチブは商用トランジスタの使用を探求し、研究者にスケーラビリティ、品質の改善、可利用性、アクセシビリティを提供する。
本稿では,量子ビットの市販化の可能性と市販化の可能性について考察する。
これは、ノイズ、コヒーレンス、大規模産業ファブにおける限定的なカスタマイズ性、スケーラビリティの問題といった課題に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: There is a growing demand for quantum computing across various sectors, including finance, materials and studying chemical reactions. A promising implementation involves semiconductor qubits utilizing quantum dots within transistors. While academic research labs currently produce their own devices, scaling this process is challenging, requires expertise, and results in devices of varying quality. Some initiatives are exploring the use of commercial transistors, offering scalability, improved quality, affordability, and accessibility for researchers. This paper delves into potential realizations and the feasibility of employing off-the-shelf commercial devices for qubits. It addresses challenges such as noise, coherence, limited customizability in large industrial fabs, and scalability issues. The exploration includes discussions on potential manufacturing approaches for early versions of small qubit chips. The use of state-of-the-art transistors as hosts for quantum dots, incorporating readout techniques based on charge sensing or reflectometry, and methods like electron shuttling for qubit connectivity are examined. Additionally, more advanced designs, including 2D arrays and crossbar or DRAM-like access arrays, are considered for the path toward accessible quantum computing.
- Abstract(参考訳): 金融、材料、化学反応の研究など、さまざまな分野における量子コンピューティングの需要が高まっている。
有望な実装には、トランジスタ内の量子ドットを利用する半導体量子ビットが含まれる。
学術研究機関は現在、独自のデバイスを作っているが、このプロセスのスケーリングは困難であり、専門知識を必要とし、さまざまな品質のデバイスに結果をもたらす。
いくつかのイニシアチブは商用トランジスタの使用を探求し、研究者にスケーラビリティ、品質の改善、可利用性、アクセシビリティを提供する。
本稿では,量子ビットの市販化の可能性と市販化の可能性について考察する。
これは、ノイズ、コヒーレンス、大規模産業ファブにおける限定的なカスタマイズ性、スケーラビリティの問題といった課題に対処する。
この調査には、小型キュービットチップの初期バージョンの製造アプローチに関する議論が含まれている。
量子ドットのホストとして最先端トランジスタを使用し、電荷センシングやリフレクションメトリーに基づく読み出し技術を導入し、量子ビット接続のための電子シャットリングのような方法を検討した。
さらに、2Dアレイやクロスバー、DRAMライクなアクセスアレイなど、より高度な設計が、アクセス可能な量子コンピューティングへの道のりとして検討されている。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - Ion-Based Quantum Computing Hardware: Performance and End-User Perspective [0.3348742525511937]
これは、さまざまな量子コンピューティングハードウェアプラットフォームの概要を提供する一連の論文の2番目の論文である。
これは、中性原子量子コンピューティングに関する私たちの最初の論文に続くものです。
論文 参考訳(メタデータ) (2024-05-19T05:04:07Z) - Entanglement-based quantum information protocols designed with silicon quantum dot platform [0.3222802562733786]
スピンベースの量子ビット(量子ビット)演算は、高忠実度で普遍論理ゲートを実現するために集中的に研究されている。
本稿では、電気的に定義された5つのシリコン量子ドット系における絡み合いに基づく量子情報プロトコルについて検討する。
本稿では,マジック状態の生成,絡み合いスワップ,量子テレポーテーションの3つの応用について論じる。
論文 参考訳(メタデータ) (2024-03-28T16:35:39Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Rapid cryogenic characterisation of 1024 integrated silicon quantum dots [0.6819010383838326]
1024個のシリコン量子ドットとオンチップのデジタルおよびアナログエレクトロニクスの統合を実証し、1K以下で動作した。
量子ドットパラメータは、高速自動機械学習ルーチンによって抽出され、量子ドットの収量を評価し、デバイス設計の影響を理解する。
その結果、シリコン量子デバイスの高速な大規模研究が、現在の探査技術よりも低い温度と測定速度で実施できることが示されている。
論文 参考訳(メタデータ) (2023-10-31T13:14:43Z) - Assessing requirements to scale to practical quantum advantage [56.22441723982983]
大規模量子アプリケーションに必要なリソースを推定するために,スタックの層を抽象化し,量子リソース推定のためのフレームワークを開発する。
3つのスケールされた量子アプリケーションを評価し、実用的な量子優位性を達成するために数十万から数百万の物理量子ビットが必要であることを発見した。
私たちの研究の目標は、より広範なコミュニティがスタック全体の設計選択を探索できるようにすることで、実用的な量子的優位性に向けた進歩を加速することにあります。
論文 参考訳(メタデータ) (2022-11-14T18:50:27Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Characterizing Qubit Traffic of a Quantum Intranet aiming at Modular
Quantum Computers [1.8602413562219944]
量子コアプロセッサは、量子コンピュータのスケーラビリティの究極の解決策として考えられている。
本稿では,マルチチップ相互接続型量子コンピュータで動作する量子回路の時間的特性評価を行う手法を提案する。
論文 参考訳(メタデータ) (2022-08-31T21:33:17Z) - Engineering the Quantum Scientific Computing Open User Testbed (QSCOUT):
Design details and user guide [0.0]
量子科学コンピューティング オープンユーザーテストベッド(Quantum Scientific Computing Open User Testbed, QSCOUT)は、サンディア国立研究所(Sandia National Laboratories)にある量子量子ビットシステムである。
研究者が量子アルゴリズムを実行するために使用できる量子ハードウェアを提供する。
量子回路と低レベルパルス制御の両方を利用でき、新しいプログラミングと最適化のモードを研究することができる。
論文 参考訳(メタデータ) (2021-04-01T20:41:44Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
デジタル量子コンピュータ(DQC)は、古典的コンピュータでは引き起こせない量子シミュレーションを効率的に行うことができる。
このレビューの目的は、物理量子優位性を達成するために行われた進歩の要約を提供することである。
論文 参考訳(メタデータ) (2021-01-21T20:10:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。