論文の概要: Normalizing Flows for Conformal Regression
- arxiv url: http://arxiv.org/abs/2406.03346v2
- Date: Wed, 26 Jun 2024 15:55:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 18:16:00.782706
- Title: Normalizing Flows for Conformal Regression
- Title(参考訳): コンフォーマル回帰のための正規化流れ
- Authors: Nicolo Colombo,
- Abstract要約: Conformal Prediction (CP)アルゴリズムは、ラベル付きデータに基づいて出力を校正することで予測モデルの不確実性を推定する。
キャリブレーション過程をトレーニングすることで、間隔をローカライズする一般的なスキームを提案する。
PapadopoulosらによるError Reweighting CPアルゴリズム(2008年)とは異なり、このフレームワークは名目と経験的条件の妥当性のギャップを推定できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conformal Prediction (CP) algorithms estimate the uncertainty of a prediction model by calibrating its outputs on labeled data. The same calibration scheme usually applies to any model and data without modifications. The obtained prediction intervals are valid by construction but could be inefficient, i.e. unnecessarily big, if the prediction errors are not uniformly distributed over the input space. We present a general scheme to localize the intervals by training the calibration process. The standard prediction error is replaced by an optimized distance metric that depends explicitly on the object attributes. Learning the optimal metric is equivalent to training a Normalizing Flow that acts on the joint distribution of the errors and the inputs. Unlike the Error Reweighting CP algorithm of Papadopoulos et al. (2008), the framework allows estimating the gap between nominal and empirical conditional validity. The approach is compatible with existing locally-adaptive CP strategies based on re-weighting the calibration samples and applies to any point-prediction model without retraining.
- Abstract(参考訳): Conformal Prediction (CP)アルゴリズムは、ラベル付きデータに基づいて出力を校正することで予測モデルの不確実性を推定する。
同じキャリブレーション方式は、通常、変更なしにどんなモデルやデータにも適用される。
得られた予測間隔は、構成によって有効であるが、入力空間上に均一に分布しない場合、非効率、すなわち不要に大きい可能性がある。
キャリブレーション過程をトレーニングすることで、間隔をローカライズする一般的なスキームを提案する。
標準予測誤差は、オブジェクト属性に明示的に依存する最適化された距離メートル法に置き換えられる。
最適な計量を学ぶことは、エラーと入力の合同分布に作用する正規化フローを訓練するのと同じである。
PapadopoulosらによるError Reweighting CPアルゴリズム(2008年)とは異なり、このフレームワークは名目と経験的条件の妥当性のギャップを推定できる。
この手法は、キャリブレーションサンプルの再重み付けに基づく既存の局所適応型CP戦略と互換性があり、再トレーニングせずに任意の点予測モデルに適用できる。
関連論文リスト
- Beyond Calibration: Assessing the Probabilistic Fit of Neural Regressors via Conditional Congruence [2.2359781747539396]
ディープネットワークは、しばしば過剰な自信と不一致な予測分布に悩まされる。
本稿では,条件付きカーネルの平均埋め込みを用いて,学習した予測分布とデータセットにおける経験的条件分布との距離を推定する,条件付きコングルーエンス誤差(CCE)について紹介する。
本研究では,1)データ生成プロセスが知られている場合の分布間の不一致を正確に定量化し,2)実世界の高次元画像回帰タスクに効果的にスケールし,3)未知のインスタンス上でのモデルの信頼性を評価することができることを示す。
論文 参考訳(メタデータ) (2024-05-20T23:30:07Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Few-Shot Calibration of Set Predictors via Meta-Learned
Cross-Validation-Based Conformal Prediction [33.33774397643919]
本稿では,設定した予測サイズを減らすことを目的としたメタ学習ソリューションを提案する。
より効率的なバリデーションベースのCPではなく、クロスバリデーションベースのCP上に構築されている。
これは、厳格なタスク・マージナル保証を減らすのではなく、正式なタスク毎のキャリブレーション保証を保持する。
論文 参考訳(メタデータ) (2022-10-06T17:21:03Z) - Parametric and Multivariate Uncertainty Calibration for Regression and
Object Detection [4.630093015127541]
一般的な検出モデルでは,観測誤差と比較して空間的不確かさが過大評価されている。
実験の結果, 簡便な等速回帰補正法は, 良好な校正不確実性を実現するのに十分であることがわかった。
対照的に、後続のプロセスに正規分布が必要な場合、GP-Normal再校正法が最良の結果をもたらす。
論文 参考訳(メタデータ) (2022-07-04T08:00:20Z) - Modular Conformal Calibration [80.33410096908872]
回帰における再校正のためのアルゴリズムを多種多様なクラスで導入する。
このフレームワークは、任意の回帰モデルをキャリブレーションされた確率モデルに変換することを可能にする。
我々は17の回帰データセットに対するMCCの実証的研究を行った。
論文 参考訳(メタデータ) (2022-06-23T03:25:23Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Cross-validation: what does it estimate and how well does it do it? [2.049702429898688]
クロスバリデーションは予測誤差を推定するために広く使われている手法であるが、その振る舞いは複雑であり、完全には理解されていない。
これは、通常の最小二乗に適合する線形モデルの場合ではなく、同じ集団から引き出された他の目に見えない訓練セットに適合するモデルの平均予測誤差を推定するものである。
論文 参考訳(メタデータ) (2021-04-01T17:58:54Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
完全大域キャリブレーションと完全個別化キャリブレーションのギャップにまたがる細粒度キャリブレーション指標を提案する。
次に,局所再校正法であるLoReを導入し,既存の校正法よりもLCEを改善する。
論文 参考訳(メタデータ) (2021-02-22T07:22:12Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
本稿では、自動予測のための自動機械学習(Automatic Machine Learning for Conformal Prediction, AutoCP)というAutoMLフレームワークを提案する。
最高の予測モデルを選択しようとする慣れ親しんだAutoMLフレームワークとは異なり、AutoCPは、ユーザが指定したターゲットカバレッジ率を達成する予測間隔を構築する。
さまざまなデータセットでAutoCPをテストしたところ、ベンチマークアルゴリズムを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-06-24T23:13:11Z) - Individual Calibration with Randomized Forecasting [116.2086707626651]
予測値がランダムに設定された場合,各サンプルのキャリブレーションは回帰設定で可能であることを示す。
我々は、個別の校正を強制する訓練目標を設計し、それをランダム化された回帰関数の訓練に使用する。
論文 参考訳(メタデータ) (2020-06-18T05:53:10Z) - CRUDE: Calibrating Regression Uncertainty Distributions Empirically [4.552831400384914]
機械学習における校正された不確実性推定は、自動運転車、医療、天気予報、気候予報など多くの分野において重要である。
本稿では,特定の不確実性分布を仮定しない回帰設定のキャリブレーション手法を提案する: 回帰不確実性分布のキャリブレーション(CRUDE)。
CRUDEは、最先端技術よりも、一貫してシャープで、校正され、正確な不確実性の推定値を示す。
論文 参考訳(メタデータ) (2020-05-26T03:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。