論文の概要: Beyond Calibration: Assessing the Probabilistic Fit of Neural Regressors via Conditional Congruence
- arxiv url: http://arxiv.org/abs/2405.12412v2
- Date: Mon, 14 Oct 2024 19:12:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 13:59:30.817252
- Title: Beyond Calibration: Assessing the Probabilistic Fit of Neural Regressors via Conditional Congruence
- Title(参考訳): 校正を超えて:条件整合によるニューラル回帰器の確率的フィットを評価する
- Authors: Spencer Young, Cole Edgren, Riley Sinema, Andrew Hall, Nathan Dong, Porter Jenkins,
- Abstract要約: ディープネットワークは、しばしば過剰な自信と不一致な予測分布に悩まされる。
本稿では,条件付きカーネルの平均埋め込みを用いて,学習した予測分布とデータセットにおける経験的条件分布との距離を推定する,条件付きコングルーエンス誤差(CCE)について紹介する。
本研究では,1)データ生成プロセスが知られている場合の分布間の不一致を正確に定量化し,2)実世界の高次元画像回帰タスクに効果的にスケールし,3)未知のインスタンス上でのモデルの信頼性を評価することができることを示す。
- 参考スコア(独自算出の注目度): 2.2359781747539396
- License:
- Abstract: While significant progress has been made in specifying neural networks capable of representing uncertainty, deep networks still often suffer from overconfidence and misaligned predictive distributions. Existing approaches for addressing this misalignment are primarily developed under the framework of calibration, with common metrics such as Expected Calibration Error (ECE). However, calibration can only provide a strictly marginal assessment of probabilistic alignment. Consequently, calibration metrics such as ECE are distribution-wise measures and cannot diagnose the point-wise reliability of individual inputs, which is important for real-world decision-making. We propose a stronger condition, which we term conditional congruence, for assessing probabilistic fit. We also introduce a metric, Conditional Congruence Error (CCE), that uses conditional kernel mean embeddings to estimate the distance, at any point, between the learned predictive distribution and the empirical, conditional distribution in a dataset. We show that using CCE to measure congruence 1) accurately quantifies misalignment between distributions when the data generating process is known, 2) effectively scales to real-world, high dimensional image regression tasks, and 3) can be used to gauge model reliability on unseen instances.
- Abstract(参考訳): 不確実性を表現できるニューラルネットワークの特定には大きな進歩があったが、深層ネットワークはしばしば過度に自信と不整合な予測分布に悩まされている。
このミスアライメントに対処するための既存のアプローチは、主にキャリブレーションの枠組みの下で開発されており、期待キャリブレーションエラー(ECE)のような一般的な指標がある。
しかし、キャリブレーションは確率的アライメントの厳密な限界評価しか提供できない。
その結果、ECEなどのキャリブレーション指標は分布的尺度であり、実際の意思決定において重要な個々の入力のポイントワイド信頼性を診断できない。
本稿では,確率的適合性を評価するための条件整合性(条件整合性)という,より強い条件を提案する。
また、条件付きカーネルの平均埋め込みを用いて、学習した予測分布とデータセットにおける経験的条件分布の間の距離を推定する、条件付きコングルーエンス誤差(CCE)も導入する。
コングルーエンスの測定にCCEを使うことが示される。
1)データ生成プロセスが分かっている場合の分布間のミスアライメントを正確に定量化する。
2)実世界の高次元画像回帰作業に効果的にスケールし、
3. 見えないインスタンスのモデルの信頼性を測定するために使用することができる。
関連論文リスト
- Probabilistic Scores of Classifiers, Calibration is not Enough [0.32985979395737786]
二項分類タスクでは、確率的予測の正確な表現が実世界の様々な応用に不可欠である。
本研究では,予測スコアと真の確率分布の一致を優先するアプローチを強調した。
その結果,従来の校正基準の限界が明らかとなり,重要な意思決定のための予測モデルの信頼性を損なう可能性が示唆された。
論文 参考訳(メタデータ) (2024-08-06T19:53:00Z) - Decoupling of neural network calibration measures [45.70855737027571]
本稿では,AUSE(Area Under Sparsification Error curve)測定値に焦点をあてて,異なるニューラルネットワークキャリブレーション尺度の結合について検討する。
本稿では,現行の手法は自由度を保ち,安全クリティカルな機能のホモログ化のユニークなモデルを妨げると結論付けている。
論文 参考訳(メタデータ) (2024-06-04T15:21:37Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Calibration-Aware Bayesian Learning [37.82259435084825]
本稿では、キャリブレーション対応ベイズニューラルネットワーク(CA-BNN)と呼ばれる統合フレームワークを提案する。
ベイズ学習のように変分分布を最適化しながら、データ依存あるいはデータ非依存の正則化をそれぞれ適用する。
予測キャリブレーション誤差(ECE)と信頼性図を用いて,提案手法の利点を検証した。
論文 参考訳(メタデータ) (2023-05-12T14:19:15Z) - Evaluating Aleatoric Uncertainty via Conditional Generative Models [15.494774321257939]
本研究では,アレータティック不確実性推定のための条件生成モデルについて検討する。
本稿では,2つの条件分布間の差を測定するための2つの指標を提案する。
我々は,我々の測定値が条件分布の相違を正確に測定する方法を数値的に示す。
論文 参考訳(メタデータ) (2022-06-09T05:39:04Z) - Bayesian Confidence Calibration for Epistemic Uncertainty Modelling [4.358626952482686]
キャリブレーション法の不確実性を考慮した信頼度推定手法を提案する。
物体検出校正のための最先端校正性能を実現する。
論文 参考訳(メタデータ) (2021-09-21T10:53:16Z) - Distribution-free uncertainty quantification for classification under
label shift [105.27463615756733]
2つの経路による分類問題に対する不確実性定量化(UQ)に焦点を当てる。
まず、ラベルシフトはカバレッジとキャリブレーションの低下を示すことでuqを損なうと論じる。
これらの手法を, 理論上, 分散性のない枠組みで検討し, その優れた実用性を示す。
論文 参考訳(メタデータ) (2021-03-04T20:51:03Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z) - Distribution-free binary classification: prediction sets, confidence
intervals and calibration [106.50279469344937]
分布自由条件における二項分類のための不確実性定量化(キャリブレーション、信頼区間、予測セット)の3つの概念について検討する。
固定幅と一様質量の両双対の双対確率に対する信頼区間を導出する。
我々の「三脚」定理の結果として、双有理確率に対するこれらの信頼区間は分布自由キャリブレーションに繋がる。
論文 参考訳(メタデータ) (2020-06-18T14:17:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。