論文の概要: UniAutoML: A Human-Centered Framework for Unified Discriminative and Generative AutoML with Large Language Models
- arxiv url: http://arxiv.org/abs/2410.12841v2
- Date: Fri, 18 Oct 2024 03:03:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:34.252451
- Title: UniAutoML: A Human-Centered Framework for Unified Discriminative and Generative AutoML with Large Language Models
- Title(参考訳): UniAutoML: 大規模言語モデルによる識別と生成の統一のための人間中心のフレームワーク
- Authors: Jiayi Guo, Zan Chen, Yingrui Ji, Liyun Zhang, Daqin Luo, Zhigang Li, Yiqin Shen,
- Abstract要約: 我々は、人間中心のAutoMLフレームワークであるUniAutoMLを紹介し、AutoMLを識別的タスクと生成的タスクの両方に統一する。
UniAutoMLの人間中心の設計は、自然言語の対話を容易にする対話型ユーザインタフェース(CUI)を革新的に特徴付けている。
この設計により、AutoMLトレーニングプロセス全体の透明性とユーザコントロールが向上し、ユーザがトレーニング対象のモデルをシームレスに分解あるいは修正できるようになる。
- 参考スコア(独自算出の注目度): 5.725785427377439
- License:
- Abstract: Automated Machine Learning (AutoML) has simplified complex ML processes such as data pre-processing, model selection, and hyper-parameter searching. However, traditional AutoML frameworks focus solely on discriminative tasks, often falling short in tackling AutoML for generative models. Additionally, these frameworks lack interpretability and user engagement during the training process, primarily due to the absence of human-centered design. It leads to a lack of transparency in final decision-making and limited user control, potentially reducing trust and adoption of AutoML methods. To address these limitations, we introduce UniAutoML, a human-centered AutoML framework that leverages Large Language Models (LLMs) to unify AutoML for both discriminative (e.g., Transformers and CNNs for classification or regression tasks) and generative tasks (e.g., fine-tuning diffusion models or LLMs). The human-centered design of UniAutoML innovatively features a conversational user interface (CUI) that facilitates natural language interactions, providing users with real-time guidance, feedback, and progress updates for better interpretability. This design enhances transparency and user control throughout the AutoML training process, allowing users to seamlessly break down or modify the model being trained. To mitigate potential risks associated with LLM generated content, UniAutoML incorporates a safety guardline that filters inputs and censors outputs. We evaluated UniAutoML's performance and usability through experiments on eight diverse datasets and user studies involving 25 participants, demonstrating that UniAutoML not only enhances performance but also improves user control and trust. Our human-centered design bridges the gap between AutoML capabilities and user understanding, making ML more accessible to a broader audience.
- Abstract(参考訳): Automated Machine Learning (AutoML)は、データ前処理、モデル選択、ハイパーパラメータ検索などの複雑なMLプロセスを単純化した。
しかし、従来のAutoMLフレームワークは差別的なタスクのみに重点を置いており、しばしば生成モデルにAutoMLに取り組むことに不足している。
さらに、これらのフレームワークは、トレーニングプロセス中に解釈可能性やユーザエンゲージメントを欠いている。
これにより、最終的な意思決定の透明性が欠如し、ユーザコントロールが制限され、AutoMLメソッドの信頼性と採用が低下する可能性がある。
これらの制限に対処するため、UniAutoMLは、Large Language Models(LLMs)を活用して、差別的(例えば、分類や回帰タスクのためのTransformerとCNN)と生成的タスク(例えば、微調整拡散モデルまたはLLMs)の両方にAutoMLを統合する、人間中心のAutoMLフレームワークである。
UniAutoMLの人間中心の設計は革新的に会話型ユーザインタフェース(CUI)を備えており、自然言語の対話を容易にし、ユーザにリアルタイムのガイダンス、フィードバック、理解性向上のための進捗アップデートを提供する。
この設計により、AutoMLトレーニングプロセス全体の透明性とユーザコントロールが向上し、ユーザがトレーニング対象のモデルをシームレスに分解あるいは修正できるようになる。
LLM生成コンテンツに関連する潜在的なリスクを軽減するため、UniAutoMLでは、入力をフィルタリングして出力を検閲する安全ガードラインが組み込まれている。
我々は、UniAutoMLの性能とユーザビリティを、25人の参加者を含む8つの多様なデータセットとユーザスタディの実験を通して評価し、UniAutoMLはパフォーマンスを向上するだけでなく、ユーザコントロールと信頼も向上することを示した。
私たちの人間中心のデザインは、AutoML機能とユーザ理解のギャップを埋めるものであり、MLをより広範囲のオーディエンスに利用できるようにするものです。
関連論文リスト
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - AutoM3L: An Automated Multimodal Machine Learning Framework with Large Language Models [6.496539724366041]
本稿では,革新的マルチモーダル機械学習フレームワークAutoM3Lを紹介する。
AutoM3Lはデータモダリティを理解し、ユーザ要求に基づいて適切なモデルを選択する。
6つの多様なマルチモーダルデータセット上でのAutoM3Lの性能評価を行った。
論文 参考訳(メタデータ) (2024-08-01T16:01:51Z) - Verbalized Machine Learning: Revisiting Machine Learning with Language Models [63.10391314749408]
言語化機械学習(VML)の枠組みを紹介する。
VMLはパラメータ空間を人間の解釈可能な自然言語に制限する。
我々は,VMLの有効性を実証的に検証し,VMLがより強力な解釈可能性を実現するためのステップストーンとして機能することを期待する。
論文 参考訳(メタデータ) (2024-06-06T17:59:56Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
自動機械学習(AutoML)は、機械学習(ML)を自動かつ効率的に構成する基本的目的を中心に形成された。
AutoMLの完全な可能性を解き放つ鍵は、現在探索されていないAutoMLシステムとのユーザインタラクションの側面に対処することにある、と私たちは主張する。
論文 参考訳(メタデータ) (2024-06-05T15:05:24Z) - A Multivocal Literature Review on the Benefits and Limitations of
Automated Machine Learning Tools [9.69672653683112]
我々は多言語文献レビューを行い、学術文献から54の資料と、AutoMLの利点と限界について報告した灰色文献から108の資料を同定した。
メリットについては、AutoMLツールがMLの中核ステップの合理化に役立つ点を強調します。
AutoMLの普及の障害となるいくつかの制限を強調します。
論文 参考訳(メタデータ) (2024-01-21T01:39:39Z) - Can Fairness be Automated? Guidelines and Opportunities for
Fairness-aware AutoML [52.86328317233883]
本報告では、公平性に関連する害が発生する様々な方法の概要を概説する。
この方向に進むためには、いくつかのオープンな技術的課題を強調します。
論文 参考訳(メタデータ) (2023-03-15T09:40:08Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - AutoML in The Wild: Obstacles, Workarounds, and Expectations [37.813441975457735]
本研究は,現実の実践においてユーザが遭遇するAutoMLの限界を理解することに焦点を当てる。
その結果,カスタマイズ性,透明性,プライバシーから生じる3つの大きな課題を克服するために,ユーザエージェンシーを積極的に実施していることが判明した。
論文 参考訳(メタデータ) (2023-02-21T17:06:46Z) - Towards Green Automated Machine Learning: Status Quo and Future
Directions [71.86820260846369]
AutoMLは高いリソース消費で批判されている。
本稿では,AutoMLプロセス全体を環境に優しいものにするためのパラダイムであるGreen AutoMLを提案する。
論文 参考訳(メタデータ) (2021-11-10T18:57:27Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
本稿では,高度にスケーラブルなコンポーネントワイドブースティングアルゴリズムを用いて適用可能な,解釈可能な付加モデルを構築するAutoMLシステムを提案する。
我々のシステムは、部分的な効果やペアの相互作用を可視化するなど、簡単なモデル解釈のためのツールを提供する。
解釈可能なモデル空間に制限があるにもかかわらず、我々のシステムは、ほとんどのデータセットにおける予測性能の点で競争力がある。
論文 参考訳(メタデータ) (2021-09-12T18:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。