What Matters in Hierarchical Search for Combinatorial Reasoning Problems?
- URL: http://arxiv.org/abs/2406.03361v2
- Date: Tue, 13 Aug 2024 19:56:45 GMT
- Title: What Matters in Hierarchical Search for Combinatorial Reasoning Problems?
- Authors: Michał Zawalski, Gracjan Góral, Michał Tyrolski, Emilia Wiśnios, Franciszek Budrowski, Łukasz Kuciński, Piotr Miłoś,
- Abstract summary: Recent efforts have sought to enhance planning by incorporating hierarchical high-level search strategies, known as subgoal methods.
While promising, their performance against traditional low-level planners is inconsistent, raising questions about their application contexts.
We identify the attributes pivotal for leveraging the advantages of high-level search: hard-to-learn value functions, complex action spaces, presence of dead ends in the environment, or using data collected from diverse experts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficiently tackling combinatorial reasoning problems, particularly the notorious NP-hard tasks, remains a significant challenge for AI research. Recent efforts have sought to enhance planning by incorporating hierarchical high-level search strategies, known as subgoal methods. While promising, their performance against traditional low-level planners is inconsistent, raising questions about their application contexts. In this study, we conduct an in-depth exploration of subgoal-planning methods for combinatorial reasoning. We identify the attributes pivotal for leveraging the advantages of high-level search: hard-to-learn value functions, complex action spaces, presence of dead ends in the environment, or using data collected from diverse experts. We propose a consistent evaluation methodology to achieve meaningful comparisons between methods and reevaluate the state-of-the-art algorithms.
Related papers
- Layer-of-Thoughts Prompting (LoT): Leveraging LLM-Based Retrieval with Constraint Hierarchies [0.3946282433423277]
Layer-of-Thoughts Prompting (LoT) uses constraint hierarchies to filter and refine candidate responses to a given query.
LoT significantly improves the accuracy and comprehensibility of information retrieval tasks.
arXiv Detail & Related papers (2024-10-16T01:20:44Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
We propose a novel framework called mccHRL to provide different levels of temporal abstraction on listwise recommendation.
Within the hierarchical framework, the high-level agent studies the evolution of user perception, while the low-level agent produces the item selection policy.
Results observe significant performance improvement by our method, compared with several well-known baselines.
arXiv Detail & Related papers (2024-09-11T17:01:06Z) - A Provably Efficient Option-Based Algorithm for both High-Level and Low-Level Learning [54.20447310988282]
We present a meta-algorithm alternating between regret minimization algorithms instanced at different (high and low) temporal abstractions.
At the higher level, we treat the problem as a Semi-Markov Decision Process (SMDP), with fixed low-level policies, while at a lower level, inner option policies are learned with a fixed high-level policy.
arXiv Detail & Related papers (2024-06-21T13:17:33Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
We propose PathFinder, a tree-search-based reasoning path generation approach.
It enhances diverse branching and multi-hop reasoning through the integration of dynamic decoding.
Our model generalizes well to longer, unseen reasoning chains, reflecting similar complexities to beam search with large branching factors.
arXiv Detail & Related papers (2023-12-08T17:05:47Z) - Hybrid Search for Efficient Planning with Completeness Guarantees [63.02803974708516]
We propose an efficient approach to augment a subgoal search method to achieve completeness in discrete action spaces.
This solution achieves the best of both worlds: the practical efficiency of high-level search and the completeness of low-level search.
arXiv Detail & Related papers (2023-10-19T15:16:43Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
Large language models (LLMs) can generate code-like plans for complex inference tasks such as visual reasoning.
We propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow)
arXiv Detail & Related papers (2023-08-18T16:21:40Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
We propose to use reinforcement learning to identify subgoals in expert trajectories.
We build a vector-quantized generative model for the identified subgoals to perform subgoal-level planning.
In experiments, the algorithm excels at solving complex, long-horizon decision-making problems outperforming state-of-the-art.
arXiv Detail & Related papers (2023-01-30T15:04:39Z) - Frequent Itemset-driven Search for Finding Minimum Node Separators in
Complex Networks [61.2383572324176]
We propose a frequent itemset-driven search approach, which integrates the concept of frequent itemset mining in data mining into the well-known memetic search framework.
It iteratively employs the frequent itemset recombination operator to generate promising offspring solution based on itemsets that frequently occur in high-quality solutions.
In particular, it discovers 29 new upper bounds and matches 18 previous best-known bounds.
arXiv Detail & Related papers (2022-01-18T11:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.