Computational Supremacy of Quantum Eigensolver by Extension of Optimized Binary Configurations
- URL: http://arxiv.org/abs/2406.03366v1
- Date: Wed, 5 Jun 2024 15:19:53 GMT
- Title: Computational Supremacy of Quantum Eigensolver by Extension of Optimized Binary Configurations
- Authors: Hayun Park, Hunpyo Lee,
- Abstract summary: We develop a quantum eigensolver based on a D-Wave Quantum Annealer (D-Wave QA)
This approach performs iterative QA measurements to optimize the eigenstates $vert psi rangle$ without the derivation of a classical computer.
We confirm that the proposed QE algorithm provides exact solutions within the errors of $5 times 10-3$.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We developed a quantum eigensolver (QE) which is based on an extension of optimized binary configurations measured by quantum annealing (QA) on a D-Wave Quantum Annealer (D-Wave QA). This approach performs iterative QA measurements to optimize the eigenstates $\vert \psi \rangle$ without the derivation of a classical computer. The computational cost is $\eta M L$ for full eigenvalues $E$ and $\vert \psi \rangle$ of the Hamiltonian $\hat{H}$ of size $L \times L$, where $M$ and $\eta$ are the number of QA measurements required to reach the converged $\vert \psi \rangle$ and the total annealing time of many QA shots, respectively. Unlike the exact diagonalized (ED) algorithm with $L^3$ iterations on a classical computer, the computation cost is not significantly affected by $L$ and $M$ because $\eta$ represents a very short time within $10^{-2}$ seconds on the D-Wave QA. We selected the tight-binding $\hat{H}$ that contains the exact $E$ values of all energy states in two systems with metallic and insulating phases. We confirmed that the proposed QE algorithm provides exact solutions within the errors of $5 \times 10^{-3}$. The QE algorithm will not only show computational supremacy over the ED approach on a classical computer but will also be widely used for various applications such as material and drug design.
Related papers
- High-precision and low-depth eigenstate property estimation: theory and resource estimation [2.6811507121199325]
Estimating the eigenstate properties of quantum many-body systems is a long-standing, challenging problem for both classical and quantum computing.
Here, we present a full-stack design of a random sampling algorithm for estimating the eigenenergy and the observable expectations on the eigenstates.
arXiv Detail & Related papers (2024-06-06T17:54:26Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace.
We present a quantum algorithm that uses $O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$ queries to the block-encoding for any $Gamma$.
arXiv Detail & Related papers (2024-04-04T17:58:01Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - On sampling determinantal and Pfaffian point processes on a quantum
computer [49.1574468325115]
DPPs were introduced by Macchi as a model in quantum optics the 1970s.
Most applications require sampling from a DPP, and given their quantum origin, it is natural to wonder whether sampling a DPP on a classical computer is easier than on a classical one.
Vanilla sampling consists in two steps, of respective costs $mathcalO(N3)$ and $mathcalO(Nr2)$ operations on a classical computer, where $r$ is the rank of the kernel matrix.
arXiv Detail & Related papers (2023-05-25T08:43:11Z) - Quantum Multi-Resolution Measurement with application to Quantum Linear
Solver [0.0]
We propose a quantum multi-resolution measurement (QMRM) that gives a solution with an accuracy $epsilon$ in $O(nlog(1/epsilon))$ measurements.
The QMRM computational cost with an accuracy $epsilon$ is smaller than $O(n/epsilon2)$.
We also propose an algorithm entitled QMRM-QLS (quantum linear solver) for solving a linear system of equations.
arXiv Detail & Related papers (2023-04-12T16:31:44Z) - Wasserstein Solution Quality and the Quantum Approximate Optimization
Algorithm: A Portfolio Optimization Case Study [0.0]
optimizing a portfolio of financial assets is a critical industrial problem which can be approximately solved using algorithms suitable for quantum processing units (QPUs)
We benchmark the success of this approach using the Quantum Approximate Optimization Algorithm (QAOA); an algorithm targeting gate-model QPUs.
Our focus is on the quality of solutions achieved as determined by the Normalized and Complementary Wasserstein Distance, $eta$.
arXiv Detail & Related papers (2022-02-14T15:00:28Z) - On solving classes of positive-definite quantum linear systems with
quadratically improved runtime in the condition number [0.0]
We show that solving a Quantum Linear System entails a runtime linear in $kappa$ when $A$ is positive definite.
We present two new quantum algorithms featuring a quadratic speed-up in $kappa$.
arXiv Detail & Related papers (2021-01-28T08:41:21Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Variational Quantum Linear Solver [0.3774866290142281]
We propose a hybrid quantum-classical algorithm for solving linear systems on near-term quantum computers.
We numerically solve non-trivial problems of size up to $250times250$ using Rigetti's quantum computer.
arXiv Detail & Related papers (2019-09-12T17:28:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.