UnWave-Net: Unrolled Wavelet Network for Compton Tomography Image Reconstruction
- URL: http://arxiv.org/abs/2406.03413v1
- Date: Wed, 5 Jun 2024 16:10:29 GMT
- Title: UnWave-Net: Unrolled Wavelet Network for Compton Tomography Image Reconstruction
- Authors: Ishak Ayad, Cécilia Tarpau, Javier Cebeiro, Maï K. Nguyen,
- Abstract summary: Compton scatter tomography (CST) presents an interesting alternative to conventional CT.
Deep unrolling networks have demonstrated potential in CT image reconstruction.
UnWave-Net is a novel unrolled wavelet-based reconstruction network.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computed tomography (CT) is a widely used medical imaging technique to scan internal structures of a body, typically involving collimation and mechanical rotation. Compton scatter tomography (CST) presents an interesting alternative to conventional CT by leveraging Compton physics instead of collimation to gather information from multiple directions. While CST introduces new imaging opportunities with several advantages such as high sensitivity, compactness, and entirely fixed systems, image reconstruction remains an open problem due to the mathematical challenges of CST modeling. In contrast, deep unrolling networks have demonstrated potential in CT image reconstruction, despite their computationally intensive nature. In this study, we investigate the efficiency of unrolling networks for CST image reconstruction. To address the important computational cost required for training, we propose UnWave-Net, a novel unrolled wavelet-based reconstruction network. This architecture includes a non-local regularization term based on wavelets, which captures long-range dependencies within images and emphasizes the multi-scale components of the wavelet transform. We evaluate our approach using a CST of circular geometry which stays completely static during data acquisition, where UnWave-Net facilitates image reconstruction in the absence of a specific reconstruction formula. Our method outperforms existing approaches and achieves state-of-the-art performance in terms of SSIM and PSNR, and offers an improved computational efficiency compared to traditional unrolling networks.
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - A Lightweight Dual-Domain Attention Framework for Sparse-View CT
Reconstruction [6.553233856627479]
We design a novel lightweight network called CAGAN, and propose a dual-domain reconstruction pipeline for parallel beam sparse-view CT.
The application of Shuffle Blocks reduces the parameters by a quarter without sacrificing its performance.
Experiments indicate that the CAGAN strikes an excellent balance between model complexity and performance, and our pipeline outperforms the DD-Net and the DuDoNet.
arXiv Detail & Related papers (2022-02-19T14:04:59Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Spectral Compressive Imaging Reconstruction Using Convolution and
Contextual Transformer [6.929652454131988]
We propose a hybrid network module, namely CCoT (Contextual Transformer) block, which can acquire the inductive bias ability of transformer simultaneously.
We integrate the proposed CCoT block into deep unfolding framework based on the generalized alternating projection algorithm, and further propose the GAP-CT network.
arXiv Detail & Related papers (2022-01-15T06:30:03Z) - A three-dimensional dual-domain deep network for high-pitch and sparse
helical CT reconstruction [13.470588027095264]
We propose a new GPU implementation of the Katsevich algorithm for helical CT reconstruction.
Our implementation divides the sinograms and reconstructs the CT images pitch by pitch.
By embedding our implementation into the network, we propose an end-to-end deep network for the high pitch helical CT reconstruction.
arXiv Detail & Related papers (2022-01-07T03:26:15Z) - Is Deep Image Prior in Need of a Good Education? [57.3399060347311]
Deep image prior was introduced as an effective prior for image reconstruction.
Despite its impressive reconstructive properties, the approach is slow when compared to learned or traditional reconstruction techniques.
We develop a two-stage learning paradigm to address the computational challenge.
arXiv Detail & Related papers (2021-11-23T15:08:26Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - Sparse-View Spectral CT Reconstruction Using Deep Learning [0.283239609744735]
We propose an approach for fast reconstruction of sparse-view spectral CT data using a U-Net convolutional neural network architecture with multi-channel input and output.
Our method is fast at run-time and because the internal convolutions are shared between the channels, the computational load increases only at the first and last layers.
arXiv Detail & Related papers (2020-11-30T14:36:23Z) - Learned Spectral Computed Tomography [0.0]
We propose a Deep Learning imaging method for Spectral Photon-Counting Computed Tomography.
The method takes the form of a two-step learned primal-dual algorithm that is trained using case-specific data.
The proposed approach is characterised by fast reconstruction capability and high imaging performance, even in limited-data cases.
arXiv Detail & Related papers (2020-03-09T13:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.