Efficient Uncertainty in LLMs through Evidential Knowledge Distillation
- URL: http://arxiv.org/abs/2507.18366v1
- Date: Thu, 24 Jul 2025 12:46:40 GMT
- Title: Efficient Uncertainty in LLMs through Evidential Knowledge Distillation
- Authors: Lakshmana Sri Harsha Nemani, P. K. Srijith, Tomasz Kuśmierczyk,
- Abstract summary: We introduce a novel approach enabling efficient and effective uncertainty estimation in LLMs without sacrificing performance.<n>We distill uncertainty-aware teacher models into compact student models sharing the same architecture but fine-tuned using Low-Rank Adaptation (LoRA)<n> Empirical evaluations on classification datasets demonstrate that such students can achieve comparable or superior predictive and uncertainty quantification performance.
- Score: 3.864321514889099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate uncertainty quantification remains a key challenge for standard LLMs, prompting the adoption of Bayesian and ensemble-based methods. However, such methods typically necessitate computationally expensive sampling, involving multiple forward passes to effectively estimate predictive uncertainty. In this paper, we introduce a novel approach enabling efficient and effective uncertainty estimation in LLMs without sacrificing performance. Specifically, we distill uncertainty-aware teacher models - originally requiring multiple forward passes - into compact student models sharing the same architecture but fine-tuned using Low-Rank Adaptation (LoRA). We compare two distinct distillation strategies: one in which the student employs traditional softmax-based outputs, and another in which the student leverages Dirichlet-distributed outputs to explicitly model epistemic uncertainty via evidential learning. Empirical evaluations on classification datasets demonstrate that such students can achieve comparable or superior predictive and uncertainty quantification performance relative to their teacher models, while critically requiring only a single forward pass. To our knowledge, this is the first demonstration that immediate and robust uncertainty quantification can be achieved in LLMs through evidential distillation.
Related papers
- Efficient Uncertainty Estimation via Distillation of Bayesian Large Language Models [12.69571386421462]
In this paper, we investigate the possibility of eliminating the need for test-time sampling for uncertainty estimation.<n>We distill an off-the-shelf Bayesian LLM into a non-Bayesian student LLM by minimizing the divergence between their predictive distributions.<n>Our experiments demonstrate that uncertainty estimation capabilities on training data can successfully generalize to unseen test data.
arXiv Detail & Related papers (2025-05-16T22:26:03Z) - Improving Uncertainty Quantification in Large Language Models via Semantic Embeddings [11.33157177182775]
Accurately quantifying uncertainty in large language models (LLMs) is crucial for their reliable deployment.
Current state-of-the-art methods for measuring semantic uncertainty in LLMs rely on strict bidirectional entailment criteria.
We propose a novel approach that leverages semantic embeddings to achieve smoother and more robust estimation of semantic uncertainty.
arXiv Detail & Related papers (2024-10-30T04:41:46Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models [21.929902181609936]
We propose a novel approach to integrate uncertainty-based active learning and LoRA.
For the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model.
For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident.
arXiv Detail & Related papers (2024-03-02T10:38:10Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.