3rd Place Solution for MOSE Track in CVPR 2024 PVUW workshop: Complex Video Object Segmentation
- URL: http://arxiv.org/abs/2406.03668v1
- Date: Thu, 6 Jun 2024 00:56:25 GMT
- Title: 3rd Place Solution for MOSE Track in CVPR 2024 PVUW workshop: Complex Video Object Segmentation
- Authors: Xinyu Liu, Jing Zhang, Kexin Zhang, Yuting Yang, Licheng Jiao, Shuyuan Yang,
- Abstract summary: Video Object (VOS) is a vital task in computer vision, focusing on distinguishing foreground objects from the background across video frames.
Our work draws inspiration from the Cutie model, and we investigate the effects of object memory, the total number of memory frames, and input resolution on segmentation performance.
- Score: 63.199793919573295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video Object Segmentation (VOS) is a vital task in computer vision, focusing on distinguishing foreground objects from the background across video frames. Our work draws inspiration from the Cutie model, and we investigate the effects of object memory, the total number of memory frames, and input resolution on segmentation performance. This report validates the effectiveness of our inference method on the coMplex video Object SEgmentation (MOSE) dataset, which features complex occlusions. Our experimental results demonstrate that our approach achieves a J\&F score of 0.8139 on the test set, securing the third position in the final ranking. These findings highlight the robustness and accuracy of our method in handling challenging VOS scenarios.
Related papers
- 3D-Aware Instance Segmentation and Tracking in Egocentric Videos [107.10661490652822]
Egocentric videos present unique challenges for 3D scene understanding.
This paper introduces a novel approach to instance segmentation and tracking in first-person video.
By incorporating spatial and temporal cues, we achieve superior performance compared to state-of-the-art 2D approaches.
arXiv Detail & Related papers (2024-08-19T10:08:25Z) - Practical Video Object Detection via Feature Selection and Aggregation [18.15061460125668]
Video object detection (VOD) needs to concern the high across-frame variation in object appearance, and the diverse deterioration in some frames.
Most of contemporary aggregation methods are tailored for two-stage detectors, suffering from high computational costs.
This study invents a very simple yet potent strategy of feature selection and aggregation, gaining significant accuracy at marginal computational expense.
arXiv Detail & Related papers (2024-07-29T02:12:11Z) - Training-Free Robust Interactive Video Object Segmentation [82.05906654403684]
We propose a training-free prompt tracking framework for interactive video object segmentation (I-PT)
We jointly adopt sparse points and boxes tracking, filtering out unstable points and capturing object-wise information.
Our framework has demonstrated robust zero-shot video segmentation results on popular VOS datasets.
arXiv Detail & Related papers (2024-06-08T14:25:57Z) - 1st Place Solution for MOSE Track in CVPR 2024 PVUW Workshop: Complex Video Object Segmentation [72.54357831350762]
We propose a semantic embedding video object segmentation model and use the salient features of objects as query representations.
We trained our model on a large-scale video object segmentation dataset.
Our model achieves first place (textbf84.45%) in the test set of Complex Video Object Challenge.
arXiv Detail & Related papers (2024-06-07T03:13:46Z) - What is Point Supervision Worth in Video Instance Segmentation? [119.71921319637748]
Video instance segmentation (VIS) is a challenging vision task that aims to detect, segment, and track objects in videos.
We reduce the human annotations to only one point for each object in a video frame during training, and obtain high-quality mask predictions close to fully supervised models.
Comprehensive experiments on three VIS benchmarks demonstrate competitive performance of the proposed framework, nearly matching fully supervised methods.
arXiv Detail & Related papers (2024-04-01T17:38:25Z) - MOSE: A New Dataset for Video Object Segmentation in Complex Scenes [106.64327718262764]
Video object segmentation (VOS) aims at segmenting a particular object throughout the entire video clip sequence.
The state-of-the-art VOS methods have achieved excellent performance (e.g., 90+% J&F) on existing datasets.
We collect a new VOS dataset called coMplex video Object SEgmentation (MOSE) to study the tracking and segmenting objects in complex environments.
arXiv Detail & Related papers (2023-02-03T17:20:03Z) - Tackling Background Distraction in Video Object Segmentation [7.187425003801958]
A video object segmentation (VOS) aims to densely track certain objects in videos.
One of the main challenges in this task is the existence of background distractors that appear similar to the target objects.
We propose three novel strategies to suppress such distractors.
Our model achieves a comparable performance to contemporary state-of-the-art approaches, even with real-time performance.
arXiv Detail & Related papers (2022-07-14T14:25:19Z) - The Second Place Solution for The 4th Large-scale Video Object
Segmentation Challenge--Track 3: Referring Video Object Segmentation [18.630453674396534]
ReferFormer aims to segment object instances in a given video referred by a language expression in all video frames.
This work proposes several tricks to boost further, including cyclical learning rates, semi-supervised approach, and test-time augmentation inference.
The improved ReferFormer ranks 2nd place on CVPR2022 Referring Youtube-VOS Challenge.
arXiv Detail & Related papers (2022-06-24T02:15:06Z) - Co-segmentation Inspired Attention Module for Video-based Computer
Vision Tasks [11.61956970623165]
We propose a generic module called "Co-Segmentation Module Activation" (COSAM) to promote the notion of co-segmentation based attention among a sequence of video frame features.
We show the application of COSAM in three video based tasks namely 1) Video-based person re-ID, 2) Video captioning, & 3) Video action classification.
arXiv Detail & Related papers (2021-11-14T15:35:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.