Untrained Neural Nets for Snapshot Compressive Imaging: Theory and Algorithms
- URL: http://arxiv.org/abs/2406.03694v1
- Date: Thu, 6 Jun 2024 02:22:43 GMT
- Title: Untrained Neural Nets for Snapshot Compressive Imaging: Theory and Algorithms
- Authors: Mengyu Zhao, Xi Chen, Xin Yuan, Shirin Jalali,
- Abstract summary: Snapshot compressive imaging (SCI) recovers high-dimensional (3D) data cubes from a single 2D measurement.
In this paper, we focus on SCI recovery algorithms that employ untrained neural networks (UNNs), such as deep image prior (DIP), to model source structure.
- Score: 15.54330224419903
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Snapshot compressive imaging (SCI) recovers high-dimensional (3D) data cubes from a single 2D measurement, enabling diverse applications like video and hyperspectral imaging to go beyond standard techniques in terms of acquisition speed and efficiency. In this paper, we focus on SCI recovery algorithms that employ untrained neural networks (UNNs), such as deep image prior (DIP), to model source structure. Such UNN-based methods are appealing as they have the potential of avoiding the computationally intensive retraining required for different source models and different measurement scenarios. We first develop a theoretical framework for characterizing the performance of such UNN-based methods. The theoretical framework, on the one hand, enables us to optimize the parameters of data-modulating masks, and on the other hand, provides a fundamental connection between the number of data frames that can be recovered from a single measurement to the parameters of the untrained NN. We also employ the recently proposed bagged-deep-image-prior (bagged-DIP) idea to develop SCI Bagged Deep Video Prior (SCI-BDVP) algorithms that address the common challenges faced by standard UNN solutions. Our experimental results show that in video SCI our proposed solution achieves state-of-the-art among UNN methods, and in the case of noisy measurements, it even outperforms supervised solutions.
Related papers
- Deep Convolutional Neural Networks Meet Variational Shape Compactness Priors for Image Segmentation [7.314877483509877]
Shape compactness is a key geometrical property to describe interesting regions in many image segmentation tasks.
We propose two novel algorithms to solve the introduced image segmentation problem that incorporates a shape-compactness prior.
The proposed algorithms significantly improve IoU by 20% training on a highly noisy image dataset.
arXiv Detail & Related papers (2024-05-23T11:05:35Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
We introduce a modality-agnostic neural compression algorithm based on a functional view of data and parameterised as an Implicit Neural Representation (INR)
Bridging the gap between latent coding and sparsity, we obtain compact latent representations non-linearly mapped to a soft gating mechanism.
After obtaining a dataset of such latent representations, we directly optimise the rate/distortion trade-off in a modality-agnostic space using neural compression.
arXiv Detail & Related papers (2023-01-23T15:22:42Z) - Deep network series for large-scale high-dynamic range imaging [2.3759432635713895]
We propose a new approach for large-scale high-dynamic range computational imaging.
Deep Neural Networks (DNNs) trained end-to-end can solve linear inverse imaging problems almost instantaneously.
Alternative Plug-and-Play approaches have proven effective to address high-dynamic range challenges, but rely on highly iterative algorithms.
arXiv Detail & Related papers (2022-10-28T11:13:41Z) - Deep Unfolding of the DBFB Algorithm with Application to ROI CT Imaging
with Limited Angular Density [15.143939192429018]
This paper presents a new method for reconstructing regions of interest (ROI) from a limited number of computed (CT) measurements.
Deep methods are fast, and they can reach high reconstruction quality by leveraging information from datasets.
We introduce an unfolding neural network called UDBFB designed for ROI reconstruction from limited data.
arXiv Detail & Related papers (2022-09-27T09:10:57Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
We propose a unifying deep unfolding multi-sampling-ratio CS-MRI framework, by merging advantages of model-based and deep learning-based methods.
Inspired by multigrid algorithm, we first embed the CS-MRI-based optimization algorithm into correction-distillation scheme.
We employ a condition module to learn adaptively step-length and noise level from compressive sampling ratio in every stage.
arXiv Detail & Related papers (2022-05-14T13:36:27Z) - Dynamic Proximal Unrolling Network for Compressive Sensing Imaging [29.00266254916676]
We present a dynamic proximal unrolling network (dubbed DPUNet), which can handle a variety of measurement matrices via one single model without retraining.
Specifically, DPUNet can exploit both embedded physical model via gradient descent and imposing image prior with learned dynamic proximal mapping.
Experimental results demonstrate that the proposed DPUNet can effectively handle multiple CSI modalities under varying sampling ratios and noise levels with only one model.
arXiv Detail & Related papers (2021-07-23T03:04:44Z) - Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging [48.34565372026196]
We propose a novel HSI reconstruction method based on the a Posterior (MAP) estimation framework.
We also propose to estimate the local means of the GSM models by the deep convolutional neural network (DCNN)
arXiv Detail & Related papers (2021-03-12T08:57:06Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution.
We propose a new image restoration framework that is based on minimizing a loss function that includes a "projected-version" of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN.
arXiv Detail & Related papers (2021-02-04T08:52:46Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Deep Unfolding Network for Image Super-Resolution [159.50726840791697]
This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
arXiv Detail & Related papers (2020-03-23T17:55:42Z) - BP-DIP: A Backprojection based Deep Image Prior [49.375539602228415]
We propose two image restoration approaches: (i) Deep Image Prior (DIP), which trains a convolutional neural network (CNN) from scratch in test time using the degraded image; and (ii) a backprojection (BP) fidelity term, which is an alternative to the standard least squares loss that is usually used in previous DIP works.
We demonstrate the performance of the proposed method, termed BP-DIP, on the deblurring task and show its advantages over the plain DIP, with both higher PSNR values and better inference run-time.
arXiv Detail & Related papers (2020-03-11T17:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.