Deep Unfolding Network for Image Super-Resolution
- URL: http://arxiv.org/abs/2003.10428v1
- Date: Mon, 23 Mar 2020 17:55:42 GMT
- Title: Deep Unfolding Network for Image Super-Resolution
- Authors: Kai Zhang, Luc Van Gool, Radu Timofte
- Abstract summary: This paper proposes an end-to-end trainable unfolding network which leverages both learning-based methods and model-based methods.
The proposed network inherits the flexibility of model-based methods to super-resolve blurry, noisy images for different scale factors via a single model.
- Score: 159.50726840791697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning-based single image super-resolution (SISR) methods are continuously
showing superior effectiveness and efficiency over traditional model-based
methods, largely due to the end-to-end training. However, different from
model-based methods that can handle the SISR problem with different scale
factors, blur kernels and noise levels under a unified MAP (maximum a
posteriori) framework, learning-based methods generally lack such flexibility.
To address this issue, this paper proposes an end-to-end trainable unfolding
network which leverages both learning-based methods and model-based methods.
Specifically, by unfolding the MAP inference via a half-quadratic splitting
algorithm, a fixed number of iterations consisting of alternately solving a
data subproblem and a prior subproblem can be obtained. The two subproblems
then can be solved with neural modules, resulting in an end-to-end trainable,
iterative network. As a result, the proposed network inherits the flexibility
of model-based methods to super-resolve blurry, noisy images for different
scale factors via a single model, while maintaining the advantages of
learning-based methods. Extensive experiments demonstrate the superiority of
the proposed deep unfolding network in terms of flexibility, effectiveness and
also generalizability.
Related papers
- FAS-UNet: A Novel FAS-driven Unet to Learn Variational Image
Segmentation [3.741136641573471]
We propose a novel variational-model-informed network (FAS-Unet) that exploits the model and algorithm priors to extract the multi-scale features.
The proposed network integrates image data and mathematical models, and implements them through learning a few convolution kernels.
Experimental results show that the proposed FAS-Unet is very competitive with other state-of-the-art methods in qualitative, quantitative and model complexity evaluations.
arXiv Detail & Related papers (2022-10-27T04:15:16Z) - A Unifying Multi-sampling-ratio CS-MRI Framework With Two-grid-cycle
Correction and Geometric Prior Distillation [7.643154460109723]
We propose a unifying deep unfolding multi-sampling-ratio CS-MRI framework, by merging advantages of model-based and deep learning-based methods.
Inspired by multigrid algorithm, we first embed the CS-MRI-based optimization algorithm into correction-distillation scheme.
We employ a condition module to learn adaptively step-length and noise level from compressive sampling ratio in every stage.
arXiv Detail & Related papers (2022-05-14T13:36:27Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Deep Iterative Residual Convolutional Network for Single Image
Super-Resolution [31.934084942626257]
We propose a deep Iterative Super-Resolution Residual Convolutional Network (ISRResCNet)
It exploits the powerful image regularization and large-scale optimization techniques by training the deep network in an iterative manner with a residual learning approach.
Our method with a few trainable parameters improves the results for different scaling factors in comparison with the state-of-art methods.
arXiv Detail & Related papers (2020-09-07T12:54:14Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Attentive CutMix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification [58.20132466198622]
We propose Attentive CutMix, a naturally enhanced augmentation strategy based on CutMix.
In each training iteration, we choose the most descriptive regions based on the intermediate attention maps from a feature extractor.
Our proposed method is simple yet effective, easy to implement and can boost the baseline significantly.
arXiv Detail & Related papers (2020-03-29T15:01:05Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.