論文の概要: OceanCastNet: A Deep Learning Ocean Wave Model with Energy Conservation
- arxiv url: http://arxiv.org/abs/2406.03848v2
- Date: Sun, 9 Jun 2024 04:22:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 21:24:05.196505
- Title: OceanCastNet: A Deep Learning Ocean Wave Model with Energy Conservation
- Title(参考訳): OceanCastNet:エネルギーを節約した深層学習型海洋波モデル
- Authors: Ziliang Zhang, Huaming Yu, Danqin Ren,
- Abstract要約: OceanCastNet (OCN) はエネルギーバランスの深いディープラーニングの予測モデルである。
OCNは、業界で広く使われているWaveWatch IIIモデルより一貫して優れている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional wave forecasting models, although based on energy conservation equations, are computationally expensive. On the other hand, existing deep learning geophysical fluid models, while computationally efficient, often suffer from issues such as energy dissipation in long-term forecasts. This paper proposes a novel energy-balanced deep learning wave forecasting model called OceanCastNet (OCN). By incorporating wind fields at the current, previous, and future time steps, as well as wave fields at the current and previous time steps as input variables, OCN maintains energy balance within the model. Furthermore, the model employs adaptive Fourier operators as its core components and designs a masked loss function to better handle the impact of land-sea boundaries. A series of experiments on the ERA5 dataset demonstrate that OCN can achieve short-term forecast accuracy comparable to traditional models while exhibiting an understanding of the wave generation process. In comparative experiments under both normal and extreme conditions, OCN consistently outperforms the widely used WaveWatch III model in the industry. Even after long-term forecasting, OCN maintains a stable and energy-rich state. By further constructing a simple meteorological model, OCN-wind, which considers energy balance, this paper confirms the importance of energy constraints for improving the long-term forecast performance of deep learning meteorological models. This finding provides new ideas for future research on deep learning geophysical fluid models.
- Abstract(参考訳): 従来の波動予測モデルは、エネルギー保存方程式に基づくが、計算上は高価である。
一方、既存の深層学習の物理流体モデルでは、計算効率は高いが、長期的な予測ではエネルギー散逸などの問題に悩まされることが多い。
本論文では,OceanCastNet (OCN) と呼ばれる新しいエネルギーバランスの深いディープラーニング波予測モデルを提案する。
入力変数として、現在の、以前の、将来の時間ステップの風力場と、現在の、以前の時間ステップの波力場を組み込むことにより、OCNはモデル内のエネルギー収支を維持する。
さらに、このモデルでは、適応的なフーリエ演算子をコアコンポーネントとして使用し、陸域境界の影響をよりよく扱うためにマスク付き損失関数を設計する。
ERA5データセットの一連の実験により、OCNは波生成過程の理解を示しながら、従来のモデルに匹敵する短期予測精度を達成できることが示されている。
正常かつ極端な条件下での比較実験では、OCNは業界で広く使われているWaveWatch IIIモデルよりも一貫して優れている。
長期の予測の後でも、OCNは安定でエネルギー豊富な状態を維持している。
本稿では,エネルギー収支を考慮した簡易気象モデルOCN-windの構築により,ディープラーニング気象モデルの長期予測性能向上のためのエネルギー制約の重要性を確認する。
この発見は、深層学習の物理流体モデルの研究に新たなアイデアをもたらす。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は,気象予測に対する物理学的アプローチとAI的アプローチの相対的強みと弱みについて述べる。
GEM予測された大規模状態変数をGraphCast予測に対してスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
その結果,このハイブリッド手法は,GEMモデルの予測能力を高めるために,GraphCastの強みを活用できることが示唆された。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - Forecasting the Future with Future Technologies: Advancements in Large Meteorological Models [3.332582598089642]
気象予報の分野は、大きなモデルの統合によって大きな変化を遂げた。
FourCastNet、Pangu-Weather、GraphCast、ClimaX、FengWuといったモデルは、正確で高精度な予測を提供することで、顕著な貢献をしている。
論文 参考訳(メタデータ) (2024-04-10T00:52:54Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
本研究は、海洋循環のための原理的ニューラルオペレーターベースのデジタルツインであるOceanNetを紹介する。
オーシャンネットは北西大西洋西部境界流(ガルフストリーム)に適用される
論文 参考訳(メタデータ) (2023-10-01T23:06:17Z) - Dynamical Tests of a Deep-Learning Weather Prediction Model [0.0]
ディープラーニングの天気予報モデルは、運用センターで実行される物理ベースのモデルに匹敵する予測を生成することが示されている。
これらのモデルが大気力学を符号化したのか、あるいは最小の予測誤差を生成する単純なパターンマッチングなのかは不明だ。
ここでは、モデルトレーニングデータに似ていない4つの古典力学実験の集合に、そのようなモデルPangu-weatherを適用する。
本モデルは,すべての実験において現実的な物理を符号化し,高額な物理モデルを使用する前に,アイデアを迅速にテストするためのツールとして使用できることを示唆する。
論文 参考訳(メタデータ) (2023-09-19T18:26:41Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Skillful Twelve Hour Precipitation Forecasts using Large Context Neural
Networks [8.086653045816151]
現在の運用予測モデルは物理に基づいており、大気をシミュレートするためにスーパーコンピュータを使用している。
ニューラルネットワークに基づく新しい気象モデルのクラスは、天気予報のパラダイムシフトを表している。
最大12時間前に降水予測が可能なニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-14T22:53:04Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
公衆衛生におけるリアルタイム予測では、データ収集は簡単で要求の多いタスクである。
過去の文献では「バックフィル」現象とそのモデル性能への影響についてはほとんど研究されていない。
我々は、与えられたモデルの予測をリアルタイムで洗練することを目的とした、新しい問題とニューラルネットワークフレームワークBack2Futureを定式化する。
論文 参考訳(メタデータ) (2021-06-08T14:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。