論文の概要: Dynamical Tests of a Deep-Learning Weather Prediction Model
- arxiv url: http://arxiv.org/abs/2309.10867v1
- Date: Tue, 19 Sep 2023 18:26:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 18:02:38.933612
- Title: Dynamical Tests of a Deep-Learning Weather Prediction Model
- Title(参考訳): 深層学習天気予報モデルの動的実験
- Authors: Gregory J. Hakim and Sanjit Masanam
- Abstract要約: ディープラーニングの天気予報モデルは、運用センターで実行される物理ベースのモデルに匹敵する予測を生成することが示されている。
これらのモデルが大気力学を符号化したのか、あるいは最小の予測誤差を生成する単純なパターンマッチングなのかは不明だ。
ここでは、モデルトレーニングデータに似ていない4つの古典力学実験の集合に、そのようなモデルPangu-weatherを適用する。
本モデルは,すべての実験において現実的な物理を符号化し,高額な物理モデルを使用する前に,アイデアを迅速にテストするためのツールとして使用できることを示唆する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Global deep-learning weather prediction models have recently been shown to
produce forecasts that rival those from physics-based models run at operational
centers. It is unclear whether these models have encoded atmospheric dynamics,
or simply pattern matching that produces the smallest forecast error. Answering
this question is crucial to establishing the utility of these models as tools
for basic science. Here we subject one such model, Pangu-weather, to a set of
four classical dynamical experiments that do not resemble the model training
data. Localized perturbations to the model output and the initial conditions
are added to steady time-averaged conditions, to assess the propagation speed
and structural evolution of signals away from the local source. Perturbing the
model physics by adding a steady tropical heat source results in a classical
Matsuno--Gill response near the heating, and planetary waves that radiate into
the extratropics. A localized disturbance on the winter-averaged North Pacific
jet stream produces realistic extratropical cyclones and fronts, including the
spontaneous emergence of polar lows. Perturbing the 500hPa height field alone
yields adjustment from a state of rest to one of wind--pressure balance over ~6
hours. Localized subtropical low pressure systems produce Atlantic hurricanes,
provided the initial amplitude exceeds about 5 hPa, and setting the initial
humidity to zero eliminates hurricane development. We conclude that the model
encodes realistic physics in all experiments, and suggest it can be used as a
tool for rapidly testing ideas before using expensive physics-based models.
- Abstract(参考訳): 世界のディープラーニング天気予報モデルは、最近、運用センターで実行される物理モデルと競合する予測を生成することが示されている。
これらのモデルが大気力学をエンコードしているか、単に予測誤差が最小になるパターンマッチングなのかは不明である。
この質問に答えることは、基礎科学のツールとしてこれらのモデルの有用性を確立するのに不可欠である。
ここでは、モデルトレーニングデータに似ていない4つの古典力学実験の集合に、そのようなモデルPangu-weatherを適用する。
モデル出力と初期条件に対する局所的摂動を定常時間平均条件に付加し、局所的源から離れた信号の伝播速度と構造進化を評価する。
定常的な熱帯熱源を加えることでモデル物理学を摂動させると、暖房付近の古典的な松野ギル応答と、外熱帯に放射される惑星波が生じる。
冬平均の北太平洋ジェット流の局所的な乱れは、極低地の自発的な出現を含む、現実的な外向性サイクロンと前線を生み出す。
500hPa高原のみの摂動は、休息状態から風圧バランスの1つに約6時間にわたって調整される。
局所的な亜熱帯低気圧システムは大西洋のハリケーンを発生させ、初期振幅が約5 hpaを超え、初期湿度をゼロに設定することでハリケーンの開発をなくす。
このモデルは全ての実験で現実的な物理学をエンコードし、高価な物理モデルを使う前にアイデアを迅速にテストするためのツールとして使用できることを示唆する。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Inferring Thunderstorm Occurrence from Vertical Profiles of Convection-Permitting Simulations: Physical Insights from a Physical Deep Learning Model [0.0]
雷雨は激しい降水量、干ばつ、雷、強い風のために、社会と経済に大きな影響を及ぼす。
我々は,10の大気変数の垂直プロファイルから雷雨の発生確率を直接推定する深層ニューラルネットワークSALAMA 1Dを開発した。
SALAMA 1Dは、中央ヨーロッパで雷観測を基礎として訓練されている。
論文 参考訳(メタデータ) (2024-09-30T08:40:28Z) - Robustness of AI-based weather forecasts in a changing climate [1.4779266690741741]
現状の機械学習モデルは、現在の気候における天気予報のために訓練されたものであり、様々な気候状態において熟練した予測をもたらすことを示す。
現在の制限にもかかわらず、我々の結果は、データ駆動機械学習モデルが気候科学に強力なツールを提供することを示唆している。
論文 参考訳(メタデータ) (2024-09-27T08:11:49Z) - Exploring the Potential of Hybrid Machine-Learning/Physics-Based Modeling for Atmospheric/Oceanic Prediction Beyond the Medium Range [0.0]
本稿では、機械学習(ML)と従来の物理モデルを組み合わせたハイブリッドモデリング手法の可能性について検討する。
このモデルは、低分解能で簡易なパラメータ化大気一般循環モデル(AGCM)SPEEDYに基づいている。
このモデルはエルニーノの周期と、季節によって3~7ヶ月の降水量による地球規模のテレコネクションを予測する能力を持っている。
論文 参考訳(メタデータ) (2024-05-29T20:56:44Z) - Generalizing Weather Forecast to Fine-grained Temporal Scales via Physics-AI Hybrid Modeling [55.13352174687475]
本稿では,天気予報をより微細なテンポラルスケールに一般化する物理AIハイブリッドモデル(WeatherGFT)を提案する。
具体的には、小さな時間スケールで物理進化をシミュレートするために、慎重に設計されたPDEカーネルを用いる。
我々は、異なるリードタイムでのモデルの一般化を促進するためのリードタイムアウェアトレーニングフレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-22T16:21:02Z) - ClimODE: Climate and Weather Forecasting with Physics-informed Neural ODEs [14.095897879222676]
統計力学の重要な原理を実装した連続時間プロセスであるClimODEを提案する。
ClimODEは、値保存ダイナミクスによる正確な気象進化をモデル化し、ニューラルネットワークとしてグローバルな気象輸送を学習する。
提案手法は,大域的,地域的予測において,パラメータ化の桁違いで既存のデータ駆動手法より優れる。
論文 参考訳(メタデータ) (2024-04-15T06:38:21Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
季節的な予測は農業、水資源管理、災害の早期警戒に重要である。
機械学習の最近の進歩は、数値モデルに対する競争力のある予測能力を達成することで天気予報に革命をもたらした。
しかし、そのような基礎モデルのトレーニングには何千日ものGPU日が必要であるため、かなりの炭素排出量が発生する。
論文 参考訳(メタデータ) (2024-01-31T14:27:35Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
我々は,AIを用いた循環型天気予報システムFengWu-4DVarを開発した。
FengWu-4DVarは観測データをデータ駆動の天気予報モデルに組み込むことができる。
シミュレーションされた観測データセットの実験は、FengWu-4DVarが合理的な解析場を生成することができることを示した。
論文 参考訳(メタデータ) (2023-12-16T02:07:56Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。