論文の概要: Learning to Collide: An Adaptive Safety-Critical Scenarios Generating
Method
- arxiv url: http://arxiv.org/abs/2003.01197v3
- Date: Thu, 23 Jul 2020 02:08:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 05:59:51.698824
- Title: Learning to Collide: An Adaptive Safety-Critical Scenarios Generating
Method
- Title(参考訳): 衝突の学習: 適応型安全批判シナリオ生成手法
- Authors: Wenhao Ding, Baiming Chen, Minjun Xu, Ding Zhao
- Abstract要約: 本稿では,タスクアルゴリズム評価のための安全クリティカルなシナリオを作成するための生成フレームワークを提案する。
提案手法は,グリッド探索や人的設計手法よりも安全クリティカルなシナリオを効率的に生成できることを実証する。
- 参考スコア(独自算出の注目度): 20.280573307366627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-tail and rare event problems become crucial when autonomous driving
algorithms are applied in the real world. For the purpose of evaluating systems
in challenging settings, we propose a generative framework to create
safety-critical scenarios for evaluating specific task algorithms. We first
represent the traffic scenarios with a series of autoregressive building blocks
and generate diverse scenarios by sampling from the joint distribution of these
blocks. We then train the generative model as an agent (or a generator) to
investigate the risky distribution parameters for a given driving algorithm
being evaluated. We regard the task algorithm as an environment (or a
discriminator) that returns a reward to the agent when a risky scenario is
generated. Through the experiments conducted on several scenarios in the
simulation, we demonstrate that the proposed framework generates
safety-critical scenarios more efficiently than grid search or human design
methods. Another advantage of this method is its adaptiveness to the routes and
parameters.
- Abstract(参考訳): 自動運転アルゴリズムが現実世界に適用されると、ロングテールとレアなイベント問題が重要になる。
そこで本研究では,特定のタスクアルゴリズムを評価するための安全クリティカルシナリオを作成するための生成フレームワークを提案する。
まず,トラヒックシナリオを自己回帰的なビルディングブロックで表現し,これらのブロックの結合分布からサンプリングすることで多様なシナリオを生成する。
次に,生成モデルをエージェント(あるいはジェネレータ)として訓練し,与えられた運転アルゴリズムのリスク分散パラメータについて検討する。
我々は、タスクアルゴリズムを、リスクのあるシナリオが発生したときにエージェントに報酬を返す環境(または判別器)とみなす。
シミュレーション実験により,提案手法はグリッド探索や人体設計よりも安全クリティカルなシナリオを効率的に生成することを示した。
この方法のもう1つの利点はルートとパラメータへの適応性である。
関連論文リスト
- SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Safety-Critical Scenario Generation Via Reinforcement Learning Based
Editing [20.99962858782196]
本稿では,逐次編集による安全クリティカルなシナリオを生成する深層強化学習手法を提案する。
我々のフレームワークは、リスクと妥当性の両方の目的からなる報酬関数を用いています。
提案手法は, 従来手法と比較して, 品質の高い安全クリティカルなシナリオを生成することを示す。
論文 参考訳(メタデータ) (2023-06-25T05:15:25Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Discovering Avoidable Planner Failures of Autonomous Vehicles using
Counterfactual Analysis in Behaviorally Diverse Simulation [16.86782673205523]
本稿では,行動学的に多様な交通参加者をシミュレートする上で,近年の進歩を生かしたプランナーテストフレームワークを提案する。
提案手法は,多岐にわたる重要な計画立案者の失敗を見出すことができることを示す。
論文 参考訳(メタデータ) (2020-11-24T09:44:23Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z) - Multimodal Safety-Critical Scenarios Generation for Decision-Making
Algorithms Evaluation [23.43175124406634]
既存のニューラルネットワークベースの自律システムは、敵の攻撃に対して脆弱であることが示されている。
意思決定アルゴリズムの評価のためのフローベースマルチモーダル安全クリティカルシナリオジェネレータを提案する。
生成したトラフィックシナリオを用いて6つの強化学習アルゴリズムを評価し,その堅牢性に関する実証的な結論を提供する。
論文 参考訳(メタデータ) (2020-09-16T15:16:43Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。